Description
In this seminar I will first discuss unique computer aided design (CAD) compatible SCA security mechanisms. I will present an approach which can significantly increase the physical security-level of a design, be implemented with conventional design-tools and which does not require any special technological-support. The method consists with a correct by-design utilization of power-management libraries and tools; it embeds special and ultra low-cost randomization mechanisms in a local fashion into the RTL of a design. Therefore, making it mature and easy to master by any backend/frontend digital designer. This method is ideally suited for high security levels when used as a building block to reduce the SNR and amplify the noise in the leakage with mathematical solutions (e.g. masking). Theoretically, a limitation of the construction as a stand-alone is security-energy scaling, i.e. for very high security levels its energy cost is exponential. I will present a glimpse of our current work answering this challenge with an alternative construction which provide linear cost.
In the second part of the talk, I will discuss the threat of externally amplified coupling (EAC) attacks. A type of attack which is very dangerous for masked designs as it merges shares leakage which are otherwise supposed to be independent (weather hardware or software). I will review some of our work on the topic and will discuss the scalability of EAC attacks to high order masking designs, its dominance as compared to inherent (intra device) coupling and I will show some results from current experimentation with a dedicated ASIC test bad. Interestingly, the first and second part of the talk share a link which will be discussed.
Next sessions
-
ML-Based Hardware Trojan Detection in AI Accelerators via Power Side-Channel Analysis
Speaker : Yehya NASSER - IMT Atlantique
Our work discusses the security risks associated with outsourcing AI accelerator design due to the threat of hardware Trojans (HTs), a problem traditional testing methods fail to address. We introduce a novel solution based on Power Side-Channel Analysis (PSCA), where we collect and preprocess power traces by segmenting them and extracting features from both time and frequency domains. This[…]-
SemSecuElec
-
Side-channel
-
Machine learning
-
Hardware trojan
-