Table of contents

  • This session has been presented November 15, 2019.

Description

  • Speaker

    Shivam Bhasin

*Abstract:* Fault attacks are considered among critical threat to embedded cryptography. This talk will be divided into in two parts. The first part of the talk will explore application of faults on advanced security primitives. We present persistent fault analysis introduced at CHES 2017 and its capability to bypass state of the art fault countermeasures as well as higher-order masking with one and only one fault injection. Further, we present novel exploits in lattice based post-quantum cryptographic primitives with one (or few) faults. The second part of the talk will present, to our knowledge, the first practical combined side-channel and differential fault attacks. With application to bit permutation based ciphers like PRESENT and GIFT, practical attacks exploiting laser fault injection with power side-channel will be presented.
*Biography :* Shivam Bhasin is a Senior Research Scientist and Programme manager (Cryptographic engineering) Centre for Hardware Assurance in Temasek laboratories, Nanyang Technical University (TL@NTU), Singapore since 2015. His research interests include embedded security, trusted computing and secure designs. He received his PhD from Telecom Paristech in 2011, Master’s from Mines Saint-Etienne, France in 2008. Before NTU, Shivam held position of Research Engineer in Institut Mines-Telecom, France. He was also a visiting researcher at UCL, Belgium (2011) and Kobe University, Japan (2013). Shivam also taught hardware security as an Adjunct Professor in IIT, Kharagpur, India (2018). He regularly publishes at top peer reviewed journals and conferences. Some of his research now also forms a part of ISO/IEC 17825 standard.

Next sessions

  • Sécurité physique du mécanisme d'encapsulation de clé Classic McEliece

    • March 20, 2026 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Speaker : Brice Colombier - Laboratoire Hubert Curien, Université Jean Monnet, Saint-Étienne

    Le mécanisme d'encapsulation de clé Classic McEliece faisait partie des candidats toujours en lice au dernier tour du processus de standardisation de la cryptographie post-quantique initié par le NIST en 2016. Fondé sur les codes correcteurs d'erreurs, en particulier autour du cryptosystème de Niederreiter, sa sécurité n'a pas été fondamentalement remise en cause. Néanmoins, un aspect important du[…]
    • SemSecuElec

    • Implementation of cryptographic algorithm

  • Double Strike: Breaking Approximation-Based Side-Channel Countermeasures for DNNs

    • March 20, 2026 (11:00 - 12:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Speaker : Lorenzo CASALINO - CentraleSupélec

    Deep neural networks (DNNs) undergo lengthy and expensive training procedures whose outcome - the DNN weights - represents a significant intellectual property asset to protect. Side-channel analysis (SCA) has recently appeared as an effective approach to recover this confidential asset of DNN implementations. Ding et al. (HOST’25) introduced MACPRUNING, a novel SCA countermeasure based on pruning,[…]
    • SemSecuElec

    • Side-channel

  • Protection des processeurs modernes face à la vulnérabilité Spectre

    • April 24, 2026 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Speaker : Herinomena ANDRIANATREHINA - Inria

    Dans la quête permanente d'une puissance de calcul plus rapide, les processeurs modernes utilisent des techniques permettant d'exploiter au maximum leurs ressources. Parmi ces techniques, l'exécution spéculative tente de prédire le résultat des instructions dont l'issue n'est pas encore connue, mais dont dépend la suite du programme. Cela permet au processeur d'éviter d'être inactif. Cependant,[…]
    • SemSecuElec

    • Micro-architectural vulnerabilities

  • Post-Quantum Cryptography Accelerated by a Superscalar RISC-V Processor

    • April 24, 2026 (11:00 - 12:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Speaker : Côme Allart - Inria

    Two major changes are currently taking place in the embedded processor ecosystem: open source with the RISC-V instruction set, which could replace the ARM one, and post-quantum cryptography (PQC), which could replace classic asymmetric cryptography algorithms to resist quantum computers.In this context, this thesis investigates the improvement of embedded processor performance, generally for[…]
    • SemSecuElec

    • Implementation of cryptographic algorithm

  • Chamois: Formally verified compilation for optimisation and security

    • June 26, 2026 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Speaker : David MONNIAUX - CNRS - Verimag

    Embedded programs (including those on smart cards) are often developed in C and then compiled for the embedded processor. Sometimes they are modified by hand to incorporate countermeasures (fault attacks, etc.), but care must be taken to ensure that this does not disrupt normal program execution and that the countermeasure is actually adequate for blocking the attacks.In the process, it is[…]
    • SemSecuElec

    • Fault injection

    • Formal methods

Show previous sessions