Filter by content type

Select one or more filters. This choice will reload the page to display the filtered results.

Remove all filters

617 results

    • Seminar

    • Cryptography

    Decoding interleaved Gabidulin codes and skew complexity of sequences.

    • May 23, 2014

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Vladimir Sidorenko - Univ. Ulm

    Gabidulin codes are the rank metric analogues of Reed?Solomon codes and have found many applications including network coding and cryptography. Interleaving or the direct sum of Gabidulin codes allows both decreasing the redundancy and increasing the error correcting capability for network coding. We consider a transform domain algorithm correcting both errors and erasures with interleaved[…]
    • Seminar

    • Cryptography

    How to find low-weight polynomial multiples.

    • June 13, 2014

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Carl Löndahl - Université de Lund

    We present an improved algorithm for finding low-weight multiples of polynomials over the binary field using coding heoretic methods. The associated code defined by the given olynomial has a cyclic structure, allowing an algorithm to earch for shifts of the sought minimum-weight odeword. Therefore, a code with higher dimension is onstructed, having a larger number of low-weight codewords nd[…]
    • Seminar

    • Cryptography

    Bornes de Weil généralisées pour le nombre de points d'une courbe projective lisse définie sur un corps fini.

    • January 16, 2015

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Emmanuel Hallouin - Université de Toulouse 2

    Je commencerai par rappeler l'esprit de la preuve initiale de Weil pour la majoration du nombre de points d'une courbe projective lisse définie sur un corps fini. En particulier, j'insisterai sur le fait qu'elle découle de contraintes euclidiennes dans un espace euclidien bien choisi. Ensuite je montrerai comment cette borne de Weil peut être vue comme la borne d'ordre 1 d'une classe de bornes de[…]
    • Seminar

    • Cryptography

    Analysis of BKZ

    • May 27, 2011

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Xavier Pujol - ENS Lyon

    Strong lattice reduction is the key element for most attacks against lattice-based cryptosystems. Between the strongest but impractical HKZ reduction and the weak but fast LLL reduction, there have been several attempts to find efficient trade-offs. Among them, the BKZ algorithm introduced by Schnorr and Euchner in 1991 seems to achieve the best time/quality compromise in practice. However, no[…]
    • Seminar

    • Cryptography

    Borne inférieure pour les signatures préservant la structure symétriques

    • March 15, 2013

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Mehdi Tibouchi - LORIA

    Un schéma de signatures « préservant la structure » (SPS) est un schéma de signature numérique à clef publique dans lequel la clef publique, les messages et les signatures sont tous des n-uplets d'éléments de groupe bilinéaire, et la vérification de signature s'obtient en évaluant des produits de couplages. Cette primitive a de nombreuses applications à la construction de protocoles[…]
    • Seminar

    • Cryptography

    An explicit description of (log) de Rham cohomology over the Witt vector

    • October 19, 2012

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Moritz Minzlaff - Technische Universität Berlin

    Motivated by applications to computing zeta functions, we will discuss the log de Rham and de Rham cohomologies of smooth schemes (together with 'nice' divisors) over the Witt vectors. For the former, we will give an explicit description that eventually might lead to improvements to point counting algorithms. Regarding the latter, we will measure "how far" the de Rham cohomology of a curve is from[…]