Description
Algorithms for secure encryption in a post-quantum world are currently receiving a lot of attention in the research community, including several larger projects and a standardization effort from {NIST}. One of the most promising algorithms is the code-based scheme called QC-MDPC, which has excellent performance and a small public key size.<br/> In this work we present a very efficient key recovery attack on the QC-MDPC scheme using the fact that decryption uses an iterative decoding step and this can fail with some small probability. We identify a dependence between the secret key and the failure in decoding. This can be used to build what we refer to as a distance spectrum for the secret key, which is the set of all distances between any two ones in the secret key. In a reconstruction step we then determine the secret key from the distance spectrum. The attack has been implemented and tested on a proposed instance of QC-MDPC for 80 bit security. It successfully recovers the secret key in minutes. A slightly modified version of the attack can be applied on proposed versions of the QC-MDPC scheme that provides IND-CCA security. The attack is a bit more complex in this case, but still very much below the security level. The reason why we can break schemes with proved CCA security is that the model for these proofs typically does not include the decoding error possibility.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-