Description
An elliptic curve addition law is said to be complete if it correctly computes the sum of any two points in the elliptic curve group. One of the main reasons for the increased popularity of Edwards curves in the ECC community is that they can allow a complete group law that is also relatively efficient (e.g., when compared to all known addition laws on Edwards curves). Such complete addition formulas can simplify the task of an ECC implementer and, at the same time, can greatly reduce the potential vulnerabilities of a cryptosystem. Unfortunately, until now, complete addition laws that are relatively efficient have only been proposed on curves of composite order and have thus been incompatible with all of the currently standardized prime order curves.<br/> In this paper we present optimized addition formulas that are complete on every prime order short Weierstrass curve defined over a field k with char(k) not 2 or 3. Compared to their incomplete counterparts, these formulas require a larger number of field additions, but interestingly require fewer field multiplications. We discuss how these formulas can be used to achieve secure, exception-free implementations on all of the prime order curves in the NIST (and many other) standards.
Next sessions
-
Présentations des nouveaux doctorants Capsule
Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Speaker : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-