Table of contents

  • This session has been presented February 07, 2025 (13:45 - 14:45).

Description

  • Speaker

    Jules Baudrin - UC Louvain

En cryptographie symétrique, le choix d'une (ou de plusieurs) représentation appropriée est un point crucial à la fois dans la recherche d'attaques et dans la conception de nouvelles primitives.  En effet, les transformations mises en oeuvre sont souvent représentées commes des ensembles de polynômes univariés ou multivariés et cette pluralité de points de vue est très féconde. Par exemple, l'AES utilise un unique composant non-linéaire, sa boîte-S, dont la sécurité peut être étudiée facilement sous sa forme univariée F: GF(256) -> GF(256) mais dont la représentation multivariée F : GF(2)^{8} -> GF(2)^{8} permet d'optimiser une implémentation matérielle.

Les relations de conjugaison permettent de capturer certains de ces changements de représentation. Deux fonctions F_{1}, F_{2} sont dites conjuguées s'il existe une bijection G telle que G o F_{1} o G^{-1} = F_{2}. Dit autrement, F_{1} et F_{2} sont conjuguées si elles représentent la même fonction ``à renommage près des éléments''. Dans le cadre d'une attaque à clairs choisis, un adversaire peut donc librement choisir le changement de variables G qui lui convient le mieux. Il est donc naturel de se demander si l'étude des conjugués d'un chiffrement par blocs peut permettre de découvrir des faiblesses non prises en compte par nos arguments de sécurité actuels.

À notre connaissance, seul l'article [ToSC:BeiCanLea18] utilise ce formalisme  peu usuel pour faire le pont entre la cryptanalyse par invariant non-linéaire d'un chiffrement par blocs E_{k} et la cryptanalyse linéaire de l'un de ces conjugués G o E_{k} o G^{-1}.
Dans cette présentation, nous traiterons le cas de l'analyse différentielle d'un chiffrement conjugué. Après quelques rappels sur l'analyse différentielle, nous montrerons comment sa transposition au cas d'un conjugué peut s'avérer fertile, par exemple pour l'analyse du chiffrement Midori [AC:BBISHA15]. Nous aborderons également les nombreuses questions soulevées par ce nouveau point de vue, notamment sur le choix du ``meilleur'' changement de variables G ou encore sur l'analyse de la dépendance en la clé. Enfin, nous présenterons d'autres interprétations de ce type de faiblesses, comme des propriétés de commutation ou d'auto-équivalence du chiffrement initial E_{k}, ou encore des propriétés différentielles de E_{k} relatives à d'autres lois de groupe que l'addition modulo 2. Ces points de vue apportent des éclairages variés et complémentaires sur ce nouveau type d'analyse.

Practical infos

Next sessions

  • Verification of Rust Cryptographic Implementations with Aeneas

    • February 13, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • March 06, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • April 03, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • April 10, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Show previous sessions