Table of contents

  • This session has been presented November 07, 2025 (13:45 - 14:45).

Description

  • Speaker

    Mingjie Chen - KU Leuven

In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.

 

In this talk, we explain how to extend their Lie algebra method to finite fields, which introduces additional technical difficulties because of the positive characteristic. We show that the method works for Veronese varieties of dimension at least two over finite fields whose characteristic is greater than three and does not divide the dimension plus one.

 

We demonstrate that this leads to polynomial-time attacks against two candidate post-quantum key exchange protocols that are based on disguised Veronese surfaces and threefolds, which were recently proposed by Alzati et al. Furthermore, we provide strong evidence for the vulnerability of a digital signature scheme that relies on secant varieties of Grassmannians of projective lines, although for now this does not amount to a complete attack because the scheme operates over finite fields of characteristic two.

Practical infos

Next sessions

  • On the average hardness of SIVP for module lattices of fixed rank

    • March 06, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Lightweight (AND, XOR) Implementations of Large-Degree S-boxes

    • March 20, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Marie Bolzer - LORIA

    The problem of finding a minimal circuit to implement a given function is one of the oldest in electronics. In cryptography, the focus is on small functions, especially on S-boxes which are classically the only non-linear functions in iterated block ciphers. In this work, we propose new ad-hoc automatic tools to look for lightweight implementations of non-linear functions on up to 5 variables for[…]
    • Cryptography

    • Symmetrical primitive

    • Implementation of cryptographic algorithm

  • Algorithms for post-quantum commutative group actions

    • March 27, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Marc Houben - Inria Bordeaux

    At the historical foundation of isogeny-based cryptography lies a scheme known as CRS; a key exchange protocol based on class group actions on elliptic curves. Along with more efficient variants, such as CSIDH, this framework has emerged as a powerful building block for the construction of advanced post-quantum cryptographic primitives. Unfortunately, all protocols in this line of work are[…]
  • Journées C2: pas de séminaire

    • April 03, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • April 10, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Show previous sessions