Description
Recent algorithmic improvements of discrete logarithm computation in special extension fields threaten the security of pairing-friendly curves used in practice. A possible answer to this delicate situation is to propose alternative curves that are immune to these attacks, without compromising the efficiency of the pairing computation too much. We follow this direction, and focus on embedding degrees 5 to 8; we extend the Cocks-Pinch algorithm to obtain pairing-friendly curves with an efficient ate pairing. We carefully select our curve parameters so as to thwart possible attacks by “special” or “tower” Number Field Sieve algorithms. We target a 128-bit security level, and back this security claim by time estimates for the DLP computation. We also compare the efficiency of the optimal ate pairing computation on these curves to k = 12 curves (Barreto–Naehrig,Barreto–Lynn–Scott), k = 16 curves (Kachisa–Schaefer–Scott) and k = 1 curves (Chatterjee–Menezes–Rodríguez-Henríquez).<br/> lien: http://desktop.visio.renater.fr/scopia?ID=724108***7354&autojoin
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-