Table of contents

  • This session has been presented September 20, 2013.

Description

  • Speaker

    Jules Svartz - LIP6

La résolution de systèmes polynomiaux présentant des symétries est un problème naturel qui apparaît dans plusieurs contextes applicatifs (cryptographie, robotique, biologie, physique, codes correcteurs d'erreurs...) Les algorithmes usuels de calcul de bases de Gröbner détruisent en général ces symétries. Lorsque toutes les équations du système polynomial sont individuellement invariantes sous l'action d'un groupe, plusieurs approches peuvent-être envisagées pour tenir compte de cette action et accélérer le processus de résolution (théorie des invariants, bases de Gröbner SAGBI). Ces approches ont en commun de travailler dans l'algèbre des polynômes invariants sous l'action du groupe. Dans le cas général d'un système polynomial présentant des symétries, le cadre algébrique sous-jacent étant celui d'un idéal globalement invariant sous l'action d'un groupe, ces approches ne peuvent être utilisées. Dans cet exposé, nous nous plaçons dans ce cadre général, avec l'hypothèse que le groupe est abélien et que la caractéristique du corps ne divise pas le cardinal du groupe (cas non-modulaire). Sous ces hypothèses, il est possible de ramener l'étude du système polynomial à celui d'un système globalement invariant sous l'action d'un groupe diagonal munissant l'algèbre des polynômes d'une graduation. Cette structure additionnelle permet d'accélérer les algorithmes de calculs de bases de Gröbner basés sur l'algèbre linéaire (F4, F5,...) ainsi que l'algorithme de changement d'ordre (FGLM) dans le cas où le système présente un nombre fini de solutions. L'analyse de complexité passe par une étude asymptotique de la série de Hilbert associée à l'algèbre des invariants sous un groupe diagonal, et nous verrons qu'avec cette approche, certains problèmes deviennent résolubles en temps polynomial en la taille de l'entrée. D'une manière générale, cette approche permet de résoudre certains problèmes provenant d'applications auparavant inatteignables.

Next sessions

  • SoK: Security of the Ascon Modes

    • June 20, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Charlotte Lefevre - Radboud University

    The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…]
  • Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators

    • June 27, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Maciej Skorski - Laboratoire Hubert Curien

    The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators.   While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]
    • Cryptography

    • TRNG

  • CryptoVerif: a computationally-sound security protocol verifier

    • September 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Show previous sessions