Filter by content type

Select one or more filters. This choice will reload the page to display the filtered results.

Remove all filters

668 results

    • Seminar

    • Cryptography

    Courbes a sécurité réduite en cryptographie hyperelliptique

    • February 27, 2004

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Nicolas Thériault - Université de Toronto

    Au cours des dernières années, les courbes hyperelliptiques se sont imposées comme une bonne alternative aux courbes elliptiques pour la cryptographie a clé publique. Il est donc important de développer une bonne évaluation de la sécurité des cryptosystèmes qui en découlent.<br/> Dans cet expose, nous présentons certains développements récents pour deux types d'attaques contre le problème du log[…]
    • Seminar

    • Cryptography

    Moments des polynômes de Rudin-Shapiro (en collaboration avec L. Habsieger)

    • March 21, 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Christophe Doche - Université de Bordeaux, projet AREHCC

    Les polynômes de Rudin-Shapiro trés utilisés en théorie du signal sont définis par $P_0(z) = 1$, $Q_0(z)=1$ et $P_{n+1}(z) = P_n(z) + z^{2^n}Q_n(z),$ $Q_{n+1}(z) = Q_n(z) - z^{2^n}Q_n(z)$. En 1968, Littlewood a montré que les moments d'ordre 4 des polynômes $P_n(z)$ i.e. $\mathcal{M}_4(P_n)=\int_0^1 |P_n(e^{2i\pi t})|^4\, dt $ satisfaisaient une récurrence linéaire de degré $2$ et en a déduit que[…]
    • Seminar

    • Cryptography

    Complexité du calcul de bases de Gröbner pour des systèmes semi-réguliers dans le corps fini GF(2)

    • November 07, 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Magali Bardet - Université Pierre et Marie Curie

    Pour de nombreuses applications dans le domaine de la cryptographie (par exemple pour des systèmes de chiffrement où la clef publique est un système polynômial comme HFE, ou des systèmes de registres filtrés), nous sommes amenés à résoudre des systèmes à coefficients dans le corps fini GF(2), pour lesquels les seules solutions intéressantes sont celles dans GF(2). On a donc à résoudre un système[…]
    • Seminar

    • Cryptography

    Sur la Conjecture de Patterson-Wiedeman

    • January 24, 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Philippe Langevin - Université de Toulon

    La distance d'une fonction booléenne f de m variables au code de Reed-Muller est une mesure la non-linearité de f. Il s'agit d'une notion importante en cryptographie. L'analyse de Fourier est une méthode d'approche normale de cette question. En particulier, la non-linéarité de f est égale à [ 2^m - R(f) ] /2, où R(f) est l'amplitude spectrale de f i.e. le module maximal de ses coefficients de[…]
    • Seminar

    • Cryptography

    Introduction aux preuves interactives et au zero-knowledge

    • June 21, 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : François Arnault - Université de Limoge

    Les preuves intéractives définissent une classe de problèmes assez large englobant en particulier NP et co-NP. Elles ont un intérêt pratique dans le cadre de l'identification cryptographique, en particulier lorsqu'elles sont accompagnées de la propriété zero-knowledge.<br/> Cet exposé est une introduction, suivant un plan traditionnel. Il sera illustré par quelques exemples pris à la théorie des[…]
    • Seminar

    • Cryptography

    Extensions of Kedlaya's algorithm

    • October 18, 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Frederik Vercauteren - Bristol University

    Kedlaya described an algorithm for computing the zeta function of a hyperelliptic curve in characteristic p > 2 using the theory of Monsky-Washnitzer cohomology. Joint work with Jan Denef has resulted in 2 extensions of Kedlaya's original algorithm: the first extension can be used to compute the zeta function of a hyperelliptic curve in characteristic 2 and the second leads to a rather general[…]