Filter by content type

Select one or more filters. This choice will reload the page to display the filtered results.

Remove all filters

687 results

    • Seminar

    • Cryptography

    On homomorpic public-key cryptosystems over groups and rings

    • November 14, 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Ilia Ponomarenko - St. Petersburg

    We describe new public-key cryptosystems based on secret group and ring homomorphisms. For the group case, we use a secret embedding of a free group of rank 2 to the 2-dimensional modular group. For the ring case, we use a secret homomorphism induced by a secret group homomorphism of the corresponding multiplicative groups.
    • Seminar

    • Cryptography

    Authentification sur les groupes de tresses

    • January 16, 2004

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Hervé Sibert - France Télécom R&D

    Nous commençons par introduire le groupe de tresses et sa structure, les problèmes utilisés en cryptographie, ainsi que les attaques récentes de ces problèmes. Nous présentons ensuite un protocole d'authentification à divulgation nulle de connaissance théorique, et montrons comment, dans le cadre d'une implémentation, se rapprocher du zero-knowledge effectif, tout en évitant les attaques[…]
    • Seminar

    • Cryptography

    Galois Groups of Additive Polynomials

    • September 27, 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Heinrich Matzat - Universitaet Heidelberg

    Additive polynomials over a field $ F$ of characteristic $ p>0$ have the form $ f(X)=\sum\limits^m_{k=0} a_k X^{p^k}$ with $ a_k \in F$. In case $ a_0 \neq 0$ they are Galois polynomials with an $ \mathbb{F}_p$-vector space of solutions, and any finite Galois extension $ E$ over $ F$ can be generated by such an additive polynomial.<br/> The Galois group of $ f(X)$ or $ E/F$ , respectively, acts[…]
    • Seminar

    • Cryptography

    Monsky-Washnitzer Cohomology and Computing Zeta Functions

    • May 31, 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Kiran Kedlaya - Berkeley

    Monsky-Washnitzer cohomology is a p-adic cohomology theory for algebraic varieties over finite fields, based on algebraic de Rham cohomology. Unlike the l-adic (etale) cohomology, it is well-suited for explicit computations, particularly over fields of small characteristic. We describe how to use Monsky-Washnitzer to construct efficient algorithms for computing zeta functions of varieties over[…]
    • Seminar

    • Cryptography

    Extensions of Kedlaya's algorithm

    • October 18, 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Frederik Vercauteren - Bristol University

    Kedlaya described an algorithm for computing the zeta function of a hyperelliptic curve in characteristic p > 2 using the theory of Monsky-Washnitzer cohomology. Joint work with Jan Denef has resulted in 2 extensions of Kedlaya's original algorithm: the first extension can be used to compute the zeta function of a hyperelliptic curve in characteristic 2 and the second leads to a rather general[…]
    • Seminar

    • Cryptography

    Computing the order of the group of rational points on the Jacobian of a hyperelliptic curve in characteristic 2

    • June 07, 2002

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Alan Lauder - Oxford University

    I will describe an algorithm for computing the zeta function of an arbitrary hyperelliptic curve in characteristic 2. This is a generalisation of an earlier method of myself and Wan, which tackled a restricted class of curves. The algorithm reduces the problem to that of computing the L-function of an additive character sum over an open subset of the projective line. This latter task can be[…]