Description
Monsky-Washnitzer cohomology is a p-adic cohomology theory for algebraic varieties over finite fields, based on algebraic de Rham cohomology. Unlike the l-adic (etale) cohomology, it is well-suited for explicit computations, particularly over fields of small characteristic. We describe how to use Monsky-Washnitzer to construct efficient algorithms for computing zeta functions of varieties over finite fields, using as an example the case of hyperelliptic curves in odd characteristic.
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-