Table of contents

  • This session has been presented October 18, 2002.

Description

  • Speaker

    Frederik Vercauteren - Bristol University

Kedlaya described an algorithm for computing the zeta function of a hyperelliptic curve in characteristic p > 2 using the theory of Monsky-Washnitzer cohomology. Joint work with Jan Denef has resulted in 2 extensions of Kedlaya's original algorithm: the first extension can be used to compute the zeta function of a hyperelliptic curve in characteristic 2 and the second leads to a rather general method which works for any C_ab curve in any small characteristic. Furthermore, results obtained with an implemtation of both algorithms will be presented.

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions