Sommaire

  • Cet exposé a été présenté le 25 avril 2025 (11:00 - 12:00).

Description

  • Orateur

    Antonio RAS

The security of the public-key cryptography protecting today and tomorrow's communication is threatened by the advent of quantum computers. To address this challenge, post-quantum cryptography is employed to devise new quantum-resistant cryptosystems. The National Institute of Standards and Technology (NIST), which led the quantum-safe transition, has already standardized the first lattice KEM algorithm, called ML-KEM, and has recently selected HQC, a code-based KEM, as the second future standard. The relative immaturity of the current post-quantum cryptosystems encourages a crypto-agile approach, which maintains its security by adopting an easily transitions between schemes. Intelligent crypto-agility requires identifying and implementing efficient sharing strategies between operations, which is particularly challenging when considering cryptosystems belonging to different cryptographic families. Since the last HQC team update, polynomial multiplication has become the main bottleneck of the algorithm. An alternative state-of-the-art solution to replace this operation is the Frobenius Additive Fast Fourier Transform (FAFFT), an FFT-like operation applied in the binary field. 

This talk presents PHOENIX, the first efficient crypto-agile hardware strategy for sharing polynomial multiplication operations in ML-KEM and HQC. Specifically, the two operations targeted by the mutualisation are the Number Theoretic Transform (NTT), for ML-KEM, and the Frobenius Additive FFT (FAFFT), for HQC. To achieve agility, PHOENIX uses a hardware design called SuperButterfly unit, which can be configured to perform all the processing elements, known as butterfly structure, contained in the selected multiplication operations. 

To our knowledge, PHOENIX is the first sharing strategy proposal in lattice-code crypto-agility, and also the first existing FAFFT hardware accelerator. We demonstrate how PHOENIX can be efficiently integrated into ML-KEM and HQC at all three NIST security levels. We finally discuss the agility overhead, in terms of resource utilization, and the respective cryptosystems performance, for all the NIST security levels, using PHOENIX in a real system-on-chip FPGA scenario.

Prochains exposés

  • Sécurité physique du mécanisme d'encapsulation de clé Classic McEliece

    • 20 mars 2026 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Brice Colombier - Laboratoire Hubert Curien, Université Jean Monnet, Saint-Étienne

    Le mécanisme d'encapsulation de clé Classic McEliece faisait partie des candidats toujours en lice au dernier tour du processus de standardisation de la cryptographie post-quantique initié par le NIST en 2016. Fondé sur les codes correcteurs d'erreurs, en particulier autour du cryptosystème de Niederreiter, sa sécurité n'a pas été fondamentalement remise en cause. Néanmoins, un aspect important du[…]
    • SemSecuElec

    • Implementation of cryptographic algorithm

  • Double Strike: Breaking Approximation-Based Side-Channel Countermeasures for DNNs

    • 20 mars 2026 (11:00 - 12:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Lorenzo CASALINO - CentraleSupélec

    Deep neural networks (DNNs) undergo lengthy and expensive training procedures whose outcome - the DNN weights - represents a significant intellectual property asset to protect. Side-channel analysis (SCA) has recently appeared as an effective approach to recover this confidential asset of DNN implementations. Ding et al. (HOST’25) introduced MACPRUNING, a novel SCA countermeasure based on pruning,[…]
    • SemSecuElec

    • Side-channel

  • Protection des processeurs modernes face à la vulnérabilité Spectre

    • 24 avril 2026 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Herinomena ANDRIANATREHINA - Inria

    Dans la quête permanente d'une puissance de calcul plus rapide, les processeurs modernes utilisent des techniques permettant d'exploiter au maximum leurs ressources. Parmi ces techniques, l'exécution spéculative tente de prédire le résultat des instructions dont l'issue n'est pas encore connue, mais dont dépend la suite du programme. Cela permet au processeur d'éviter d'être inactif. Cependant,[…]
    • SemSecuElec

    • Micro-architectural vulnerabilities

  • Post-Quantum Cryptography Accelerated by a Superscalar RISC-V Processor

    • 24 avril 2026 (11:00 - 12:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : Côme Allart - Inria

    Two major changes are currently taking place in the embedded processor ecosystem: open source with the RISC-V instruction set, which could replace the ARM one, and post-quantum cryptography (PQC), which could replace classic asymmetric cryptography algorithms to resist quantum computers.In this context, this thesis investigates the improvement of embedded processor performance, generally for[…]
    • SemSecuElec

    • Implementation of cryptographic algorithm

  • Chamois: Formally verified compilation for optimisation and security

    • 26 juin 2026 (10:00 - 11:00)

    • Inria Center of the University of Rennes - Espace de conférences

    Orateur : David MONNIAUX - CNRS - Verimag

    Embedded programs (including those on smart cards) are often developed in C and then compiled for the embedded processor. Sometimes they are modified by hand to incorporate countermeasures (fault attacks, etc.), but care must be taken to ensure that this does not disrupt normal program execution and that the countermeasure is actually adequate for blocking the attacks.In the process, it is[…]
    • SemSecuElec

    • Fault injection

    • Formal methods

Voir les exposés passés