Description
Fully homomorphic encryption (FHE) is an encryption scheme that enables the direct execution of arbitrary computations on encrypted data. The first generation of FHE schemes began with Gentry's groundbreaking work in 2019. It relies on a technique called bootstrapping, which reduces noise in FHE ciphertexts. This construction theoretically enables the execution of any arithmetic circuit, but remains slow in practice. A second generation of FHE schemes appeared in 2015 and is referred to as fast bootstrapping schemes. One limitation of the later schemes is that they can only bootstrap one message at a time, but the bootstrapping procedure is relatively fast.
This presentation aims to highlight some works on the optimisation of Boolean and arithmetic circuits in the context of FHE. The optimisation of the so-called multiplicative depth of circuits will be discussed. The multiplicative depth is an important metric for the first generation of FHE schemes, as ciphertext size and, consequently, execution performance depend heavily on it. In a second part, we will discuss a circuit mapping problem encountered in the practical application of fast-bootstrapping schemes.
Infos pratiques
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-