
Circuit optimization problems in the context of

homomorphic encryption

Sergiu Carpov

Arcium

1/45

Context of this talk

Privacy-preserving computations

• Anonymization (weak privacy guaranties)

• Differential privacy (somewhat better, limited functionalities)

• Secure enclaves (must trust the “hardware”)

• Multi-party computation (communication bound)

• Homomorphic encryption (computation bound)

2/45

What is homomorphic encryption?

Classical encryption

• Protect data confidentiality:

• in storage / in transit

• Computationally difficult to decrypt
without the secret

• Or even impossible

• High performance:

• e.g. AES-NI throughput > 2GB/s on

a single CPU core

3/45

Homomorphic encryption (HE)

• Protect data confidentiality:

• in storage / in transit / in use

• Impressive progress in the efficiency of
homomorphic schemes

• Hours to milliseconds per operation

Plaintext operations

• Arithmetic over rings/fields

• Additions, multiplications, . . .

• Zp [X] mod X n + 1, Fp

4/45

Ciphertext noise

Inherent to each ciphertext

• Ensures scheme security

• Noise increases after each operation

• Multiplication ≫ addition

• Message will be lost if noise overlaps

Bootstrapping procedure

• Decreases ciphertext noise

5/45

Parameters

Ring LWE scheme example

• Scheme security given by:

• Polynomial ring size

• Noise level

• Homomorphic operations budget:

• Ciphertext coefficient size to noise ratio

LWE problem

• Find s ∈ Zn
q given polynomial

many samples of

(a, a · s+ e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0000

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

0,0008

0,0009
AND XOR

Multiplicative depth

A
N

D
 e

xe
cu

tio
n

tim
e,

 s
ec

.

X
O

R
 e

xe
cu

tio
n

 ti
m

e,
 s

ec
.

6/45

Parameters

Ring LWE scheme example

• Scheme security given by:

• Polynomial ring size

• Noise level

• Homomorphic operations budget:

• Ciphertext coefficient size to noise ratio

LWE problem

• Find s ∈ Zn
q given polynomial

many samples of

(a, a · s+ e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0000

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

0,0008

0,0009
AND XOR

Multiplicative depth

A
N

D
 e

xe
cu

tio
n

tim
e,

 s
ec

.

X
O

R
 e

xe
cu

tio
n

 ti
m

e,
 s

ec
.

6/45

Ciphertext noise

Inherent to each ciphertext

• Ensures scheme security

• Noise increases after each operation

• Multiplication ≫ addition

• Message will be lost if noise overlaps

Bootstrapping procedure

• Decreases ciphertext noise Bootstrap

7/45

Bootstrapping

• Introduced by Gentry in 2009

• Evaluate decryption algorithm

“homomorphically”

• Bootstrapping noise ≡ decryption

circuit noise

8/45

Leveled HE schemes

Features

• Many messages packed into a single ciphertext

• One instruction over multiple data (aka SIMD)

• Bootstrap is slow, but multiple messages at once

BFV/BGV

• Modular ring plaintext:

• slots mod p

• slot add/multiply/rotate

CKKS

• Real ring plaintext:

• fixed-point slots

• slot add/multiply/rotate

9/45

Fast bootstrapping schemes

Features

• Encrypt a single message per ciphertext

• Bootstrap is fast

• Arbitrary function evaluation in addition to noise reduction

• Functional Bootstrapping (FBS)

FHEW

• Focus on 2-input NAND gates

• functionally complete

• Extension to multi-input Boolean

gates

TFHE

• All 2-input gates and 3-input

MUX, 10mS per gate

• Binary-decision diagrams and

deterministic automata

• Arbitrary multi-output gates
10/45

HE compilers

Why do we need HE compilers?

• Homomorphic encryption schemes are low-level by construction

• Additions and multiplications, more or less

• Difficult to implement “efficient” applications in this context

• Evaluation time depends on the structure of the evaluated circuit:

• E.g. sum of 2 binary numbers: ripple carry or carry-lookahead?

• Circuit optimization tools are needed

Existing HE compilers

• Cingulata [CDS15], Marble [VS18], Ramparts [ACTD+19], HEIR . . .

11/45

https://heir.dev/

Bootstrap number minimization

Bootstrap problem

Input

• A leveled HE scheme which supports up to L multiplications

• Multiplicative depth L

• An arithmetic circuit of multiplicative depth > L to evaluate

Problem

• Minimize the number of bootstraps needed to evaluate the circuit

• Find a bootstrap placement

12/45

Bootstrap problem solution example

Input circuit, L = 3

Naive map Optimal map

Credits [BLMZ17] 13/45

Bootstrap problem solution example

Input circuit, L = 3 Naive map

Optimal map

Credits [BLMZ17] 13/45

Bootstrap problem solution example

Input circuit, L = 3 Naive map Optimal map

Credits [BLMZ17] 13/45

Results

Complexity

• Polynomial for L = 1

• Reduction to min-cut problem

• NP-hard for L ≥ 2

Solutions

• Mixed-integer linear programming

[PV15]

• Polynomial-time L-approximation

algorithm [BLMZ17]

Particularities

• Noise budget asymmetry between fresh and bootstrapped ciphertexts

• What is the optimal L for a circuit

• i.e minimize execution time instead of bootstrap count

14/45

Example

AES homomorphic evaluation [GHS12]

• Uses HElib1 BGV scheme

• Plaintext slots: 120 (no bootstrap) or 60 (bootstrap)

• Bootstrapped version is slower but allows further computations

• 2 bootstraps ≈ 80% of execution

1https://github.com/homenc/HElib

15/45

https://github.com/homenc/HElib

Multiplicative depth minimization

Multiplicative depth minimization problem

Problem

• Minimize the multiplicative depth of a circuit

• Arithmetic or Boolean

Goal

• Decrease circuit multiplicative depth

• Faster homomorphic evaluation

• Smaller ciphertext sizes and parameters

• Orthogonal to bootstrap number minimization

16/45

Circuit rewrite heuristics

Main idea

• Replace critical subcircuits with functionally equivalent counterparts with lower

multiplicative depth

Some existing works

• Rewrite critical paths [CAS17] or cones [ACS20]

17/45

Critical nodes in HE evaluation

Critical nodes

• Nodes which belong to circuit paths with longest multiplicative depth

• Rewriting critical nodes allows to reduce the overall multiplicative depth

18/45

Critical path rewrite heuristic

Main idea

• Rewrite all multiplicative depth-2

critical paths

Two step rewrite

• Move multiplications up

• One more multiplication

• Depth-2 to 1 transformation

• Potentially one more multiplication

Multiplicative depth-2 critical path

Multiplicative depth of r is ℓ(x) + 2
19/45

Critical path rewrite heuristic

Main idea

• Rewrite all multiplicative depth-2

critical paths

Two step rewrite

• Move multiplications up

• One more multiplication

• Depth-2 to 1 transformation

• Potentially one more multiplication

Multiplication move up operator

(x + y) · z = x · z + yz

19/45

Critical path rewrite heuristic

Main idea

• Rewrite all multiplicative depth-2

critical paths

Two step rewrite

• Move multiplications up

• One more multiplication

• Depth-2 to 1 transformation

• Potentially one more multiplication

Multiplicative depth reduce operator

(x · y) · z = x · (y · z)

If ℓ (y) < ℓ(x) and ℓ (z) < ℓ (x) then the

multiplicative depth of r decreases from

ℓ (x) + 2 to ℓ (x) + 1

19/45

Experimental setup

Boolean circuits

• EPFL combinational benchmark suite

• Circuits were optimized and mapped to {AND,XOR} gates beforehand

Experiments

• Critical path rewrite heuristic

• Executed 10 times with random seeds (get unique rewrite orders)

• Output circuit with minimum multiplicative depth

20/45

Critical path rewrite results

circuit
initial heuristic MD

#inps #outs MD #AND MD #AND init/heur

adder 256 129 255 509 11 1125 23.2

div 128 128 4253 25219 1463 31645 2.9

max 512 130 204 2832 27 4660 7.6

multiplier 128 128 254 14389 59 17942 4.3

square 64 128 247 9147 28 10478 8.8

arbiter 256 129 87 11839 42 8582 2.1

i2c 147 142 15 1161 8 1185 1.9

mem ctrl 1204 1231 110 44795 45 49175 2.4

priority 128 8 203 676 102 1106 2.0

router 60 30 21 167 11 204 1.9

MD - multiplicative depth

21/45

Going further

Critical cones

• Generalization of depth 2 critical paths

• Rewriting a cone is equivalent to rewriting n critical paths

• More optimization possibilities

y1 ym…a
(1)

1 a
(1)

2

r

at

+

+&

& &
y1

ym

…

r

at

&

&

+ Uy

v1

vt

& vn

a
(1)

1 a
(1)

2 a
(n)

1 a
(n)

2

…

a
(n)

1 a
(n)

2

&

&

…

…

uy

U
′

y

u(1) u(n)

22/45

Critical cone rewrite results

circuit
critical path rewrite critical cone rewrite

MD #AND MD init/heur MD #AND MD init/heur

adder 11 1125 23.2 9 16378 28.3

div 1463 31645 2.9 532 190855 8

max 27 4660 7.6 26 7666 7.8

multiplier 59 17942 4.3 57 23059 4.5

square 28 10478 8.8 26 11306 9.3

arbiter 42 8582 2.1 10 5183 8.7

i2c 8 1185 1.9 7 1213 2.1

mem ctrl 45 49175 2.4 40 54816 2.4

priority 102 1106 2.0 102 876 2.0

router 11 204 1.9 11 198 1.9

MD - multiplicative depth

23/45

Is multiplicative depth minimization always useful?

Trade-off between AND count and multiplicative depth

• At some point the gain from multiplicative depth decrease is canceled out by the

number of additional AND gates

Adder benchmark intermediary circuits

24/45

Considering HE evaluation

• Cone rewrite heuristic

• Store intermediary circuits with

distinct multiplicative depths

• Minimum multiplicative depth

speedup (“min MD”)

• Highest speedup (“best”)

circuit
speedup

min MD best

adder 44.9 408.3

div 11.0 40.3

max 32.0 61.0

multiplier 15.7 17.5

square 105.8 109.3

arbiter 257.9 257.9

i2c 5.2 5.2

mem ctrl 7.4 7.4

priority 3.4 3.4

router 3.5 3.5

MD - multiplicative depth

25/45

Circuit mapping to functional

bootstrappings

Fast bootstrapping schemes

Features

• Encrypt a single message per ciphertext

• Bootstrap is fast

• Arbitrary function evaluation in addition to noise reduction

• Functional Bootstrapping (FBS)

FHEW

• Focus on 2-input NAND gates

• functionally complete

• Extension to multi-input Boolean

gates

TFHE

• All 2-input gates and 3-input

MUX, 10mS per gate

• Binary-decision diagrams and

deterministic automata

• Arbitrary multi-output gates
26/45

Functional bootstrapping

FBS

• Evaluate any function F : Zp → Zp

Cost

• Depends mainly on the precision of the

plaintext space p

• FBS execution time, library tfhe-rs:

p 4 16 64 256

execution time (ms) 6 11 99 458

F (0)

F (1)

F (2)F (3)

F (4)

F (5)

F (6)

F (7) F (8)

F (9)

0

1

23

4

5

6

7 8

9

Torus split for plaintext space Z10

27/45

https://docs.zama.ai/tfhe-rs/get-started/benchmarks/cpu/cpu_programmable_bootstrapping

Non-power-of-two FBS

• FBS supports any plaintext space Zp

• Slightly slower when p ∤ N
• N is the RLWE polynomial ring size

F (0)

F (1)

F (2)F (3)

F (4)

F (5)

F (6)

F (7) F (8)

F (9)

0

1

23

4

5

6

7 8

9

Torus split for plaintext space Z10

28/45

Negacylic FBS

Negacyclic FBS

• Evaluate any function F : Z2p → Zp which
verifies:

• F (x) = −F (x + p)

• Applies to negacyclic RLWE polynomial rings:

• Such as TFHE’s ring T mod XN + 1

F (0)

F (1)

F (2)F (3)

F (4)

−F (0)

−F (1)

−F (2) −F (3)

−F (4)

0

1

23

4

5

6

7 8

9

Torus split for negacyclic plaintext

space Z5

29/45

Multi-input FBS

Generalize FBS to n-input functions

f (x0, . . . , xn−1) = F ◦ ϕ(x0, . . . , xn−1)

Steps:

1. Combine LWE samples x0, . . . , xn−1 using a linear combination ϕ

• Cheap, linear combination with public values

2. Apply FBS to evaluate F

30/45

Multi-input FBS

Valid linear combination

• A linear combination ϕ is valid for a function f if it can unambiguously distinguish
its image:

• More formally, ∀x , x ′ such that f (x) ̸= f (x ′) =⇒ ϕ(x) ̸= ϕ(x ′)

Linear combination size

• The image size of a linear combination ϕ is the smallest plaintext space needed to
evaluate ϕ

• E.g. the image of 2 · x + 3 · y is {0, 2, 3, 5} and its image size is Z6

31/45

Optimal linear combinations

Linear combination search problem

• Given an n-input function f find a valid linear combination ϕ with minimal image
size

• Smaller image sizes mean smaller plaintext spaces, thus cheaper FBS computations

Hard problem

• Exact methods, intractable for large n

• Heuristics

32/45

Examples

Symmetric Boolean functions

• ϕ (x) =
∑

i xi

• The output depends on the number of
set inputs, not their position

• n-input AND/OR/XOR gates,

majority gate, etc.

• Image size linear in n

Arbitrary Boolean functions

• ϕ (x) =
∑

i xi · 2i

• Functionally complete

• Exponential image size Z2n

• Expensive multi-input FBS

33/45

Boolean circuit map to FBS problem

Definition

Partition a Boolean circuit so that each partition is executed by one FBS

• The FBS precision (plaintext size) is fixed

• A valid linear combination is outputted for each partition

Goals

• Reduce the number of FBSs in the mapped circuit

• Ideally, it will also minimize the execution time

34/45

Manual mapping

Hand-optimized FBS circuits

• Cryptographic algorithms (used for FHE trans-ciphering)

• Trivium/Kreyvium [BOS23]

• AES [TCBS23]

• Use efficiency tricks

• Negacyclic functions, large plaintext spaces (Z2k), ..

• Drawbacks:

• Difficult and time-consuming

• Not always best solution found as we shall see later

35/45

Mapping Boolean circuits to FBS

Input

• A Boolean circuit with 2-input gates

• A maximal plaintext space size (FBS precision)

Fast heuristic

• Traverse circuit gates in topological order

• Construct the linear combination of a gate from the linear combinations of its 2
inputs

• Lazy bootstrap gate inputs if linear combination size is too large

36/45

Boolean circuits mapping to FBS

Why is it fast?

• Circuit nodes are visited only once

• Linear combinations are built incrementally

• Search only 2-coefficient linear combinations

37/45

Linear combination search

Exhaustive search

• Test all linear combinations α · x + β · y and keep the smallest valid one

• |α| ≤ ∥vty∥∞ and |β| ≤ ∥vtx∥∞
• Optimal solution always found

• Faster than integer linear programming

• Test vector validity in case of negacyclic rings

38/45

Example

(α, β)

ttAND vta+b × vtc (1, 1) (2, 1) (1, 2)

0 0,0 0 0 0

0 0,1 1 1 2

0 1,0 1 2 1

1 1,1 2 3 3

0 1,0 1 2 1

1 1,1 2 3 3

0 2,0 2 4 2

0 2,1 3 5 4

Lincomb size

invalid

6 5

Test vector 000100 00010

Negacyclic 0001 0001

multi-value tabletruth table

39/45

Map AES-128 circuit

• Best solution for FBS size 6

• 45% less bootstrappings

• 17% faster execution

• In comparison to the naive 1 gate - 1

FBS approach

• Bootstrap count vs FBS size

• One would have expected a

monotonic decrease

• Node visit order influences heuristic

solution quality

• Lazy bootstrapping strategy results

in more FBS

2 4 6 8 10 12 14 16
FBS size (p)

17500

20000

22500

25000

27500

30000

32500

35000

nu
m

be
r o

f b
oo

ts
tra

ps

0.9

1.0

1.1

1.2

ev
al

ua
tio

n
co

st

1e6AES circuit

Bristol fashion circuit aes 128.txt2

2github.com/mkskeller/bristol-fashion

40/45

github.com/mkskeller/bristol-fashion

EPFL benchmarks results

• Output solution with smallest

execution cost for FBS sizes 2..15

• On average:

• 37% decrease in execution cost

• 58% less bootstrappings

• Solutions have FBS sizes < 8 in most

cases

bench cost #boots. FBS size

adder −64% −75% 5 (7)

hyp −41% −63% 7 (14)

log2 −38% −57% 5 (10)

multiplier −50% −68% 7 (14)

sin −37% −60% 7 (14)

arbiter −48% −64% 5 (8)

ctrl −40% −61% 7 (12)

int2float −49% −67% 7 (13)

priority −40% −60% 6 (11)

router −42% −63% 7 (14)

avg. −37% −58%

41/45

Kreyvium stream cipher

• 128 bits of security

• Implement 2 versions

• Thwart heuristic “greediness”

• Changed operations order in out *

• Compare with hand-optimized versions

from [BOS23]

t1 = s66 ^ s93

t2 = s162 ^ s177

t3 = s243 ^ s288 ^ k127

out = t1 ^ t2 ^ t3

out t1 = t1 ^ (s91 & s92) ^ s171 ^ iv127

out t2 = t2 ^ (s175 & s176) ^ s264

out t3 = t3 ^ (s286 & s287) ^ s69

One iteration of Kreyvium

42/45

Kreyvium results

• Best solution for p = 6

• 5 FBS

• 45% faster than p = 3

• 2× faster than input circuit

• Better than the hand-optimized
solution

• 8 FBS instead of 10

• Smaller FBS size p = 3

4

6

8

10

12

14

16

nu
m

be
r o

f b
oo

ts
tra

ps

2 4 6 8 10 12
FBS size (p)

250

300

350

400

450

ev
al

ua
tio

n
co

st

version 1 version 2

Red dots are [BOS23] result
43/45

FBS mapped Kreyvium

• FBS size 3

• Heavy use of negacyclic

property

m1 = 2 - s66 + s93 - s162 + s177

m2 = Bootstrap(m1, [0, 1, 0, 1, 0])

m3 = 1 - s66 + s93 + s171 + iv127

m4 = Bootstrap(m3, [1, 0, 1, 0, 1])

m5 = 1 - s162 + s177 + s264

m6 = Bootstrap(m5, [1, 0, 1, 0])

m7 = 1 - s243 + s288 + k127 + s69

m8 = Bootstrap(m7, [1, 0, 1, 0, 1])

m9 = 1 + m2 - s243 + s288 + k127

out = Bootstrap(m9, [1, 0, 1, 0, 1])

m10 = 3 * m4 + s91 + s92

out t1 = Bootstrap(m10, [0, 0, 1, 1, 1, 0])

m11 = 3 * m6 + s175 + s176

out t2 = Bootstrap(m11, [0, 0, 1, 1, 1, 0])

m12 = 3 * m8 + s286 + s287

out t3 = Bootstrap(m12, [0, 0, 1, 1, 1, 0]) 44/45

Final notes

Key takeaways

• Homomorphic encryption is still a young area of research in the field of

cryptography

• Many open optimization problems in the HE “compute model”

• Key-switch placement in leveled HE schemes

• Bootstrap placement + multiplicative depth reduction

• FBS + leveled HE operations

• Similarities with multi-party computation

• Multiplicative depth in arithmetic circuits

• Similarities between FBS mapping and arithmetic garbling circuits

45/45

Questions?

45/45

References i

Pascal Aubry, Sergiu Carpov, and Renaud Sirdey.

Faster homomorphic encryption is not enough: Improved heuristic for

multiplicative depth minimization of boolean circuits.

In Topics in Cryptology–CT-RSA 2020: The Cryptographers’ Track at the RSA

Conference 2020, San Francisco, CA, USA, February 24–28, 2020, Proceedings,

pages 345–363. Springer, 2020.

David W Archer, José Manuel Calderón Trilla, Jason Dagit, Alex Malozemoff,

Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan.

Ramparts: A programmer-friendly system for building homomorphic

encryption applications.

45/45

References ii

In Proceedings of the 7th acm workshop on encrypted computing & applied

homomorphic cryptography, pages 57–68, 2019.

Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang Zhou.

Optimization of bootstrapping in circuits.

In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 2423–2433. SIAM, 2017.

Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart.

Trivial transciphering with trivium and tfhe.

In Proceedings of the 11th Workshop on Encrypted Computing & Applied

Homomorphic Cryptography, pages 69–78, 2023.

45/45

References iii

Sergiu Carpov, Pascal Aubry, and Renaud Sirdey.

A multi-start heuristic for multiplicative depth minimization of boolean

circuits.

In International Workshop on Combinatorial Algorithms, pages 275–286. Springer,

2017.

Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey.

Armadillo: a compilation chain for privacy preserving applications.

In Proceedings of the 3rd International Workshop on Security in Cloud Computing,

pages 13–19, 2015.

45/45

References iv

Craig Gentry, Shai Halevi, and Nigel P Smart.

Homomorphic evaluation of the aes circuit.

In Annual Cryptology Conference, pages 850–867. Springer, 2012.

Marie Paindavoine and Bastien Vialla.

Minimizing the number of bootstrappings in fully homomorphic encryption.

In International Conference on Selected Areas in Cryptography, pages 25–43.

Springer, 2015.

Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey.

A homomorphic aes evaluation in less than 30 seconds by means of tfhe.

In Proceedings of the 11th Workshop on Encrypted Computing & Applied

Homomorphic Cryptography, pages 79–90, 2023.

45/45

References v

Alexander Viand and Hossein Shafagh.

Marble: Making fully homomorphic encryption accessible to all.

In Proceedings of the 6th workshop on encrypted computing & applied

homomorphic cryptography, pages 49–60, 2018.

45/45

	What is homomorphic encryption?
	Bootstrap number minimization
	Multiplicative depth minimization
	Circuit mapping to functional bootstrappings

