Description
Les courbes elliptiques, très utilisées en cryptographie à clé publique, se généralisent avec les variétés abéliennes. Un exemple important de variétés abéliennes est donné par les jacobiennes de courbes hyperelliptiques.<br/> Les fonctions thêta permettent de représenter les points d'une variété abélienne. Elles sont caractérisées par les thêta constantes correspondantes. Étant donnée une courbe sous forme de Weierstrass $y2=f(x)$, quelles sont les thêta constantes correspondantes?<br/> Thomae a résolu ce problème pour le niveau $(2,2)$: ses formules relient des puissances des thêta constantes aux racines de $f$. J'expliquerai la méthode utilisée par Thomae et je montrerai comment on peut l'utiliser dans le cas des courbes elliptiques pour obtenir des formules du même genre pour d'autres niveaux. Une autre méthode est utilisée pour obtenir les niveaux $(r,r)$ pour le genre supérieur.
Prochains exposés
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Orateur : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-