Description
Nous étudions le problème du calcul de racines e-èmes modulaires. Sous l'hypothèse de la disponibilité d'un oracle fournissant des racines e-èmes de la forme particulière $x_i + c$, nous montrons qu'il est plus facile de calculer des racines $e$-èmes que de factoriser le module $n$. Ici $c$ est fixé, et l'attaquant choisit les petits entiers $x_i$. L'attaque se décline en plusieurs variantes, selon les hypothèses exactes sur l'oracle, et selon les buts poursuivis, allant de la falsification sélective à la falsificaction universelle. La complexité obtenue est $L_n(\frac{1}{3}, \sqrt[3]{\frac{32}{9}})$ dans les cas les plus significatifs, ce qui correspond à la complexité du {\sl special} number field sieve ({\sc snfs}).<br/> Ce travail étend les résultats existants sur la malléabilité du schéma de signature RSA, plus particulièrement au sujet des falsificactions affines. Ce problème particulier est polynomial lorsque le {\em padding} $c$ n'excède pas $n^{2/3}$, mais sa résolution dans le cas général était uniquement accessible via la factorisation.
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-