Description
We introduce a new computational problem related to the interpolation of group homomorphisms which generalizes many famous cryptographic problems including discrete logarithm, Diffie-Hellman, and RSA. As an application, we propose a generic undeniable signature scheme which generalizes the MOVA schemes. Our scheme is generic in the sense that we transform a private group homomorphism from public groups G to H (the order of H being public) into an undeniable signature scheme. It is provably secure in the random oracle model provided that the interpolation problem is hard and it offers the advantage of making the signature size arbitrarily short (depending on a security level). We (im)prove some security results from MOVA. We also propose a new example with complexity similar to RSA and with 3-byte signatures.
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-