Lie algebras and the security of cryptosystems based on classical varieties in disguise

joint with Wouter Castryck, Péter Kutas, Jun Bo Lau, Alexander Lemmens, Mickael Montessinos

Summary

- A series of recent papers propose post-quantum cryptosystems based on
 - Veronese threefolds (key exchange, [2023, Tullio, Gyawali])
 - Veronese surfaces (key exchange, [2025, Alzati, Tullio, Gyawali, Tortora])
 - secants of Grassmannians (signature, [2023, Tullio, Gyawali])

in disguise, i.e., they are given up to a secret projective transformation T.

- All these schemes can be broken in classical polynomial time by the Lie algebra method.
- In this talk, we focus on the key exchange protocol from Veronese threefolds as an example.

Background

Projective varieties

- Let k be a field, the projective space $\mathbf{P}_k^n = (k^{n+1} \setminus \{0\}) / \sim$ where $[x_0: x_1: \dots: x_n] \sim [\lambda x_0: \lambda x_1: \dots: \lambda x_n]$ for any $\lambda \in k^*$.
- A projective variety $X \subset \mathbf{P}_k^n$ is the common zero set of homogeneous polynomials $F_1, \dots, F_r \in k[x_0, x_1, \dots, x_n]$.
- $X = V(F_1, F_2, \dots, F_r) = \{[x_0: x_1: \dots: x_n] \in \mathbf{P}_k^n \mid F_i(x_0, x_1, \dots, x_n) = 0, \forall i\}.$ The defining ideal of X is

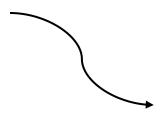
$$I(X) = \{ F \in k[x_0, x_1, \dots, x_n]_{hom} \mid F(p) = 0, \forall p \in X \}.$$

Projective equivalence

Two varieties $X, X' \subset \mathbf{P}^n$ are projectively equivalent if

$$X' = T(X) \subseteq \mathbf{P}^n$$
 for $T \in PGL_{n+1}(k)$.

The projective equivalence problem is to find T given equations for X, X'.



- let $I(X)=(F_1,\cdots,F_r),$ $I(X')=(F_1',\ldots,F_r'),$ find $S\in GL_r(k),$ $T\in PGL_n(k)$ such that

$$\begin{pmatrix} F_1' \\ \vdots \\ F_r' \end{pmatrix} = S \circ \begin{pmatrix} F_1 \circ T^{-1} \\ \vdots \\ F_r \circ T^{-1} \end{pmatrix}$$

system of non-linear equations in many variables

The group PG(X) of projective auto-equivalences is the group of automorphisms of \mathbf{P}^n that sends X to itself. I.e.,

$$PG(X) = \{T \in PGL_{n+1}(k) | T(X) = T\}.$$

Veronese varieties

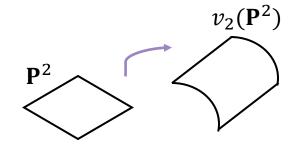
The d-fold Veronese embedding of \mathbf{P}^r is

The image $v_d(\mathbf{P}^r)$ is called a standard Veronese variety.

Example:

-
$$\mathbf{P}^2 \hookrightarrow \mathbf{P}^5 : [x : y : z] \mapsto [x^2 : xy : xz : y^2 : yz : z^2]$$

- defining ideal: $(z_0z_3-z_1^2,\ z_0z_4-z_1z_2,\ z_1z_4-z_2z_3,z_1z_5-z_2z_4,z_2^2-z_0z_5,\ z_4^2-z_3z_5)$



Projective auto-equivalences for Veronese varieties

Any $A \in PGL_{r+1}(F_q)$ lifts uniquely to $M \in PG(v_d(\mathbf{P}^r), k) \subset PGL_{n+1}(k)$

- it is a change of coordinates $\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_r \end{pmatrix} \mapsto A \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_r \end{pmatrix}$
- this induces a change of coordinates of $span_k\{x_0^d, x_0^{d-1}x_1, \cdots, x_r^d\}$
- leading to a change of coordinates of \mathbf{P}^n (i.e., $M \in \mathbf{P}G(v_d(\mathbf{P}^r), k) \subset PGL_{n+1}(k)$)

$$ightharpoonup PG(v_d(\mathbf{P}^r), k) \cong PGL_{r+1}(k)$$

Lie algebra

A Lie algebra over k is a vector space g with a bilinear operator $[\cdot,\cdot]: g \times g \to g$ such that

$$[x, x] = 0,$$
 $[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.$ (Jacobi identity)

Examples:

- $\mathfrak{gl}_n = M_n(k)$, together with the bilinear operator [A, B] = AB BA.
- \mathfrak{sl}_n = trace-zero matrices in $M_n(k)$, with the same bilinear operator

Lie algebra of varieties

Consider a variety $X \subset \mathbf{P}^n$ over k, its Lie algebra $\mathfrak{g}(X,k)$ is a subalgebra of $\mathfrak{gl}_{n+1}(k)$:

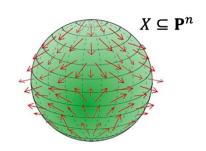
- can think of a matrix $A \in \mathfrak{gl}_{n+1}(k)$ as a vector field in \mathbf{P}^n $\mathfrak{g}(X,k)$ consists of those A for which this vector field is tangent to X
- in terms of equations:

$$\succ$$
 write $A=(a_{i,j})$ and $I(X)=(F_1,F_2,\cdots,F_r)$

$$F_i((I + \epsilon A)x) = F_i(x) + \epsilon \sum_{k,l=1}^n \frac{\partial F_i}{\partial x_k} a_{k,l} x_l + O(\epsilon^2)$$

infinitesimal transformation

should be in I(X)



Lie algebra of Veronese varieties

Recall that we saw the defining ideal of $v_2(\mathbf{P}^2)$ is

$$(z_0z_3-z_1^2, z_0z_4-z_1z_2, z_1z_4-z_2z_3, z_1z_5-z_2z_4, z_2^2-z_0z_5, z_4^2-z_3z_5).$$

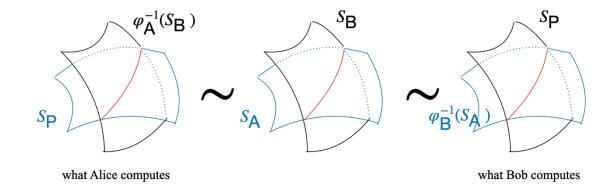
One can calculate that $\mathfrak{g}_{v_2(\mathbf{P}^2)}$ is the span of

In general: $g(v_d(\mathbf{P}^r)) \cong \mathfrak{gl}_{r+1}$

Key exchange from Veronese threefolds

Intuition

- S_P is the image of the standard Segre embedding $s_{1,1}$ $\mathbf{P}^1 \times \mathbf{P}^1 \hookrightarrow \mathbf{P}^3 \colon ([x_0:x_1],[y_0:y_1]) \mapsto [x_0y_0:x_1y_1:x_0y_1:x_1y_0],$ defined by the equation xy-zw=0 in \mathbf{P}^3 .
- Alice chooses a secret automorphism φ_A of \mathbf{P}^3 , let $S_A = \varphi_A(S_P)$. Bob chooses a secret automorphism φ_B of \mathbf{P}^3 , let $S_B = \varphi_B(S_P)$.
- The intersection $S_A \cap S_B$ is an elliptic curve and its j invariant is the shared secret.



Set up

- secretly embed \mathbf{P}^3 as a disguised Veronese threefold $V_T \coloneqq T \circ v_d(\mathbf{P}^3) \hookrightarrow \mathbf{P}^n$ by choosing $T \in PGL_{n+1}(F_q)$
- each of the n components of $(v_d \circ s_{1,1})([x_0:x_1],[y_0:y_1])$ is a degree 2d monomial expression in x_0,x_1,y_0,y_1 that is of degree d in x_0,x_1 and degree d in y_0,y_1

$$(v_d \circ s_{1,1})([x_0: x_1], [y_0: y_1]) = \Sigma_{d,1,1} \begin{pmatrix} x_0^a y_0^a \\ \vdots \\ x_1^d y_1^d \end{pmatrix} \text{ with } \Sigma_{d,1,1} \in \{0,1\}^{n \times (d+1)^2}$$

- reveal how S_P sits in \mathbf{P}^n via $v_T \coloneqq T \circ v_d$ by giving the matrix $\Sigma_P \coloneqq T \cdot \Sigma_{d,1,1}$
- generate bunch of matrices $M_1, M_2, \dots, M_k \in PG(V_T, F_q)$.

public parameter
$$pp = (\Sigma_P, M_1, M_2, \dots, M_k)$$

Key generation

- Alice samples secret $A=M_1^{e_1}\cdot M_2^{e_2}\cdot \cdots \cdot M_k^{e_k}$ let Φ_A denote the corresponding automorphism $(\Phi_A:\mathbf{P}^n\to\mathbf{P}^n,$ fixes $V_T)$
- by construction, there exists some φ_A , automorphism of ${f P}^3$ such that

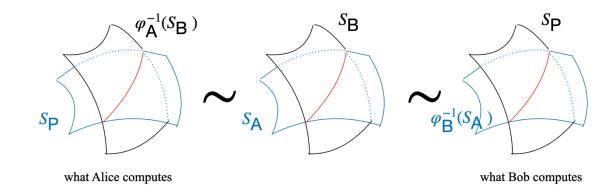
$$\Phi_A \circ v_T = v_T \circ \varphi_A$$

- $\Sigma_A := A \cdot \Sigma_P$ encodes the embedding $\Phi_A \circ v_T \circ s_{1,1} = v_T \circ \varphi_A \circ s_{1,1}$.
- compute H_A , a hyperplane containing $v_T(\varphi_A(S_P))$ can be done by sampling a random non-zero vector in the left kernel of Σ_A

Alice's public key $pk_A = H_A$, secret key $sk_A = (e_1, e_2, \dots, e_k)$.

Similarly, Bob's public key $pk_B = H_B$, secret key $sk_B = (e_1', e_2', \dots, e_k')$.

Obtaining a shared secret



Take Alice as an example

- she computes the preimage of H_B in ${\bf P}^3$ via her secret key it is a surface containing $\varphi_A^{-1}(S_B)$
- she computes the intersection $S_P \cap surface \ (\supset \varphi_A^{-1}(S_B))$
- it is a curve of bidegree (d,d), and it contains a component of bidegree (2,2)
- such a component is likely unique when d>4

concrete parameters for NIST I:

$$q = 2^{128} + 51,$$

$$d = 14$$

Attacking the scheme

Recovering any T' is enough

any
$$T' \in PGL_n(F_q)$$
 such that $V_T = T'(v_d(\mathbf{P}^3))$ (recall $V_T = T(v_d(\mathbf{P}^3))$)

$$T'T^{-1} \in \mathbf{P}G(V_T)$$

let $\phi \in PGL_3(F_q)$ that corresponds to $T'T^{-1}$, then an attacker can compute

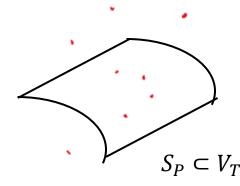
$$v_{T'}^{-1}(H_A) \cap v_{T'}^{-1}(H_B) \supset \phi^{-1}(S_A) \cap \phi^{-1}(S_B)$$

and obtain the shared secret as Alice (Bob) would.

Defining ideal of V_T

public data suffices to recover the ideal of $V_T \subset \mathbf{P}^n$

- It is known that the ideal of $v_d(\mathbf{P}^3)$ is generated by $O(d^6)$ quadratic binomials, hence $I(V_T)$ is generated by $O(d^6)$ quadratic polynomials.
- One can sample points on V_T using the knowledge of S_P and automorphisms M_1, M_2, \cdots, M_k
- Find generating polynomials using interpolation data.



The Lie algebra method

Overview

Let $X \subset \mathbf{P}^n, X' = T(X)$, then $g(X,k) \to g(X',k) \colon M \mapsto TMT^{-1}$ is an isomorphism of Lie algebras.

Question: Can we recover T from an isomorphism of $g(X, k) \rightarrow g(X', k)$?

The Lie algebra method [de Graaf, Harrison, Pilnikova and Schicho, 2006, Q]

high level description

- 1) compute the Lie algebras g(X, k), g(X', k)
- 2) find a Lie algebra isomorphism $\varphi: g(X, k) \to g(X', k)$
- 3) using linear algebra, find the matrices $T \in GL_{n+1}(k)$ such that

$$TMT^{-1} = \varphi(M)$$
 or, equivalently, $TM = \varphi(M)$ T

and identify a T that defines a projective transformation mapping X to X'.

(We work with finite field F_q in what follows.)

Computing the Lie algebra

Let $X \subset \mathbf{P}^N$ and $I(X) = (F_1, F_2, \cdots, F_r)$ (assume F_i are of the same degree (= m) for simplicity)

To compute $g(X, F_q)$:

$$\geqslant \text{let } h = \binom{N+m}{m} = \dim F_q[x_0, \cdots, x_N]_m$$

- ightharpoonup compute a free family of linear forms (f_1,\cdots,f_{h-r}) on $F_q[x_0,\cdots,x_N]_m$ s.t. $span_{F_q}(F_1,\cdots,F_r)=\cap_{i=1}^{d-m}\ker(f_i)$
- > compute a basis of the solution space of the linear system

$$f_{\alpha}\left(\Sigma_{k,l=1}^{n}a_{k,l}\frac{\partial F_{\beta}}{\partial x_{k}}x_{l}\right)=0,\ 1\leq\alpha\leq h-r, 1\leq\beta\leq r$$

The Lie algebra isomorphism

for veronese threefolds N = 3 + 1

Input: a Lie algebra g isomorphic to $\mathfrak{gl}_N(F_q)$ $(N \ge 2)$

Output: an isomorphism $\varphi : \mathfrak{g} \to \mathfrak{gl}_N(F_q)$

Let
$$e_{i,j}$$
 $(i,j=\{1,\cdots,N\})$ be the standard F_q -basis of $\mathfrak{gl}_N\big(F_q\big)$
$$\mathfrak{gl}_N\big(F_q\big)=\operatorname{diag}_N\big(F_q\big)\oplus_{i\neq j} \left\langle e_{i,j}>\right\rangle$$

Can be characterized as "eigenspace" of the map

$$\phi_{i,j}: \lambda_1 e_{1,1} + \dots + \lambda_N e_{N,N} \mapsto \lambda_i - \lambda_j$$

in the sense that

$$[h, e_{i,j}] = \phi_{i,j}(h)e_{i,j}$$
 for $h \in \operatorname{diag}_N(F_q)$.

The Lie algebra isomorphism

for veronese threefolds N = 3 + 1

Input: a Lie algebra g isomorphic to $\mathfrak{gl}_N(F_q)$ $(N \ge 2)$

Output: an isomorphism $\varphi: g \to \mathfrak{gl}_N(F_q)$

Let $e_{i,j}$ $(i,j = \{1, \dots, N\})$ be the standard

$$F_q$$
-basis of $\mathfrak{gl}_N(F_q)$

$$\mathfrak{gl}_N(F_q) = \operatorname{diag}_N(\overline{F_q}) \oplus_{i \neq j} (\overline{e_{i,j}})$$

generalization to g

• _ split Cartan subalgebra

Can be characterized as "eigenspace" of the map _ _ • _ root system

$$\phi_{i,j}: \lambda_1 = \bar{e}_{1,1} + \cdots + \bar{\lambda}_N e_{N,N} \mapsto \lambda_i - \lambda_j$$

in the sense that

$$[h, e_{i,j}] = \phi_{i,j}(h)e_{i,j} \text{ for } h \in \text{diag}_N(F_q).$$

• root space

The projective equivalence

Is an isomorphism φ of Lie algebras $\mathfrak{g}(v_d(\mathbf{P}^r), F_q), \mathfrak{g}(V_T, F_q) \subset \mathfrak{gl}_{n+1}(F_q)$ necessarily induced by an automorphism in $PGL_{n+1}(F_q)$?

Facts about $g(v_d(\mathbf{P}^r), F_q)$:

- $g(v_d(\mathbf{P}^r), F_q) \cong \mathfrak{gl}_{r+1}(F_q)$
- $Aut^{inn}\left(\mathfrak{gl}_{r+1}(F_q)\right) = \{M \mapsto B^{-1}MB \mid B \in PGL_{r+1}(F_q)\}$
- $Aut\left(\mathfrak{gl}_{r+1}(F_q)\right)/Aut^{inn}\left(\mathfrak{gl}_{r+1}(F_q)\right)$ can be written down explicitly

Algorithm sketch

- 1) try to use linear algebra to find $T \in GL_{n+1}(k) \text{ such that }$ $TMT^{-1} = \varphi(M) \text{ for a basis of }$ $\mathfrak{g}\big(v_d(\mathbf{P}^r), F_q\big)$
- 2) if no solution, then correct φ with an outer automorphism

Conclusion

Conclusion

- Polynomial time attacks on three protocols based on disguised classical varieties.
- Attacks are based on the Lie algebra method, which itself could be an interesting cryptographic tool for other schemes.

Thank you! Question?