Description
Nous présenterons l'algorithme d'Ajtai, Kumar et Sivakumar pour résoudre le problème du plus court vecteur d'un réseau Euclidien. Ce problème a été prouvé NP-dur sous des réductions randomisées par Ajtai en 1996. Cet algorithme, présenté à STOC 2001, a une complexité probabiliste $2^O(n)$ en temps et en espace. Il bat donc la précédente borne de complexité ($n^{O(n)}$), qui correspond à l'algorithme de Kannan (1983).<br/> En utilisant l'algorithme BKZ de Schnorr, cela permet d'améliorer la taille des vecteurs que l'on peut obtenir en temps polynomial. Il existe une controverse quant à la practicabilité de ce dernier résultat, du fait de la constante du $O(.)$ de $2^{O(n)}$. Schnorr estime la complexité à $O(poly(n).2^{30n})$. Nous argumenterons pourquoi il s'agirait plutôt de $O(poly(n).2^n)$. En-dehors de ces améliorations de bornes de complexité, l'algorithme d'Ajtai, Kumar et Sivakumar apporte surtout un nouvel éclairage sur l'algorithmique des réseaux Euclidiens, en donnant une vision beaucoup plus géométrique que LLL et ses variantes.
Next sessions
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Speaker : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]-
Cryptography
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-
-
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-