Description
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack scenarios and with different bounds. This work systematizes knowledge on the mode security of Ascon-AE, and fills gaps where needed. We consider six mainstream security models, all in the multi-user setting: (i) nonce-respecting security, reflecting on the existing bounds of Chakraborty et al (ASIACRYPT 2023, ACISP 2024) and Lefevre and Mennink (SAC 2024), (ii) nonce-misuse resistance, observing a non-fixable flaw in the proof of Chakraborty et al (ACISP 2024), (iii) nonce-misuse resilience, delivering missing security analysis, (iv) leakage resilience, delivering a new security analysis that supersedes the informal proof sketch (though in a different model) of Guo et al (ToSC 2020), (v) state-recovery security, expanding on the analysis of Lefevre and Mennink, and (vi) release of unverified plaintext, also delivering missing security analysis. We also match all bounds with tight attacks (up to constant and up to reasonable assumptions). As a bonus, we systematize the knowledge on Ascon-Hash and Ascon-PRF.
Infos pratiques
Prochains exposés
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-