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Introduction



Authenticated Encryption

Encplaintext P

key K

nonce N

associated data A

ciphertext C

tag T

Dec
ciphertext C

tag T

key K

nonce N

associated data A

P if T correct

⊥ otherwise

• Using key K:

• Ciphertext C encrypts plaintext P

• Tag T authenticates (N,A, P )

• Unwrapping needs to satisfy that

• Plaintext disclosed if tag is correct

• Plaintext is not leaked if tag is incorrect
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Cryptographic Competitions

CAESAR Competition

• 2014–2019

• Call for authenticated encryption scheme

• 57 submissions (of which ≈ 10 sponge/duplex-based)

• Ascon selected as winner in category lightweight applications

NIST Lightweight Cryptography Competition

• 2019–2023

• Call for authenticated encryption scheme and, optionally, hash function

• 57 submissions (of which ≈ 22 sponge/duplex-based)

• Ascon selected as winner
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Ascon [DEMS21]

Authenticated Encryption

• Duplex-based but with additional key blindings

Hashing

• Sponge-based hashing and XOFing

• Only included in NIST Lightweight Cryptography submission
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Ascon-AE



The Sponge Construction [BDPV07]

0r

0c

p p p

· · ·

· · ·

p p

· · ·

· · ·

P1 P2 P3 Pv Z1 Z2

\

r

\

c

\

r

\

c

absorb squeeze

• Extendable Output Function (variable-length digest)

• State of size b = r + c bits:

• rate r (efficiency parameter)

• capacity c (security parameter)

• P1∥ · · · ∥Pv is the message padded into r-bit blocks (e.g., 10∗ padding)
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The Duplex Construction [BDPV11]

p p p
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init duplex duplex duplex

• Stateful version of sponge

• Interleaved absorb and squeeze

• Main application: authenticated encryption
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SpongeWrap [BDPV11]
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• SpongeWrap

embeds duplex
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MonkeySpongeWrap [Men23]
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init duplex duplex duplex duplex

• State initialized using key and nonce

• Cleaned-up and synchronized

domain separation

• Spill-over into inner part

• Decryption similar to encryption
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security depends on
permutation strength,
nonce conditions,
and parameters
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Ascon-AE
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Variant of (Monkey-)SpongeWrap [BDPV11, Men23]

• Outer permutation p and inner permutation q, both on b bits

• r is the rate, c is the capacity (security parameter)

• Additional key blindings around “outer” permutations

• Domain separation simplified and spilled-over into inner part
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History of Generic Security Results (1/2)

SpongeWrap and Similar

•2011 Bertoni et al. [BDPV11]

Duplex and SpongeWrap

•2014 Jovanovic et al. [JLM14]

Security of NORX with claim on Ascon

•2015 Mennink et al. [MRV15]

Full-state duplex and SpongeWrap

•2017 Daemen et al. [DMV17]

Generalized duplex

•2019 Dobraunig and Mennink [DM19]

Leakage resilience of generalized duplex

•2023 Mennink [Men23]

Duplex guide and MonkeySpongeWrap

none of these
results deals with
additional key

blindings
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History of Generic Security Results (2/2)

Dedicated Ascon Analysis

•2019 Guo et al. [GPPS19]

Multi-user security in nonce-misuse resilience setting

Multi-user security under leakage resilience

•2023 Chakraborty et al. [CDN23]

Single-user security in nonce-respecting setting

•2024 Lefevre and Mennink [LM24]

Multi-user security in nonce-respecting and nonce-misuse setting

Multi-user security under state recovery

•2024 Chakraborty et al. [CDN24]

Extended [CDN23] to multi-user security and nonce-misuse setting

•2025 Lefevre and Mennink (this work)

Let’s clean this up!

only “proof sketches”

contain gaps [LM24]

}
equal versus

independent p, q

contains mistake
(this work)
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Our Contribution

Complete Overview of Generic Security of the Ascon-AE Mode

• Three flavors of conventional security:

1 Nonce-respecting security [BN00]

2 Nonce-misuse resistance [RS06]

3 Nonce-misuse resilience [ADL17]

• Three flavors of leaky security:

1 Security under release of unverified plaintext [ABL+14]

2 Bounded leakage resilience in leveled implementation [DP08, PSV15]

3 State-recovery security [LM24]

• We categorize existing lower and upper bounds

• We derive new security bounds and matching attacks where needed

• All results assume that p = q is a random permutation
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Security Model (1/3)

Conventional Security

1 Nonce-respecting security [BN00]

• Confidentiality: distance
(
EncpK , p ; $, p

)
• Authenticity: Pr

(
A
[
EncpK ,DecpK , p

]
forges

)
• A never repeats the same nonce for encryption queries

2 Nonce-misuse resistance [RS06]

• Same, but A may repeat the same nonce for encryption queries

• Ascon does not achieve nonce-misuse confidentiality

• In general, not achievable by one-pass AEs

• Authenticity still achievable
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Security Model (2/3)

2 Nonce-misuse resilience [ADL17]

• Idea: challenge oracles for non-reused nonces only (but A may still repeat

nonces in leaky oracles)

• Confidentiality: distance
(
EncpK , LEncpK , p ; $, LEncpK , p

)
• Authenticity: Pr

(
A
[
EncpK , LEncpK ,DecpK , p

]
forges

)

Leaky Security

1 Security under release of unverified plaintext [ABL+14]

• Confidentiality is covered by plaintext awareness

• Ascon does not achieve plaintext awareness

• In general, not achievable by nonce-based length-preserving AEs

• Authenticity still achievable
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Security Model (3/3)

p p
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t

\

c

leak leak leak leak

Protected Protected

• Ascon was designed to provide some security even if the internal permutation

evaluations leak (e.g., via side channels)

2 Leakage resilience: inner evaluations leak information via a leakage function

• Outer evaluations do not leak (leveled implementation setup [DP08, PSV15])

• Adverary’s oracle access is similar to nonce-misuse resilience, where

LEnc/LDec additionally leak leakage function’s output

3 State recovery: the entire inner b-bit states leaks, adversary may reuse nonces
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to p = q setting

new: matching attacks
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Simplified Numerical Interpretation

setting confidentiality as long as authenticity as long as

nonce-respecting

N ≪ min{2k/µ, 2b/M, 2c} N ≪ min{2k/µ, 2b/M, 2c},QD ≪ 2t

nonce-misuse resilience

N ≪ min{2k/µ, 2c/M} N ≪ min{2k/µ, 2c/M}, QD ≪ 2t

nonce-misuse resistance

— N ≪ min{2k/µ, 2c/M}, QD ≪ 2t

state-recovery security

— N ≪ min{2k/µ, 2c/2}, QD ≪ 2t

Application to Ascon-AEAD Parameters

• (k, b, c, r, t) =


(128, 320, 256, 64, 128) for Ascon-128

(128, 320, 192, 128, 128) for Ascon-128a

(160, 320, 256, 64, 128) for Ascon-80pq

• Assume online complexity of Q,M≪ 264 · µ

• Generic security as long as N ≪ 2128/µ

(exceptions: N ≪ 2160/µ for Ascon-80pq; N ≪ 296 for Ascon-128a under state-recovery)
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General Goal: Forgery

• Observe multiple evaluations EncK(N,A, P ) = (C, T )

• Output a new tuple (N,A,C, T ) for which DecK does not return ⊥
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• Adversary ignores associated data

• Adversary can make N queries to p,

M construction queries,

QD forgery attempts
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Teaser: How to Forge (3/6)

p p

· · ·

· · ·

p p

IV

K

\

b−k−n

\

k

\

n

(0∗∥K)⊕ (0∗∥1)

10∗

K∥0∗ 0∗∥K

⌊·⌋t

\

r

\

c

\

|Pv|

\

r−|Pv|

\

c

\

t

\

c

C1P1 C2P2 Cv−1Pv−1 CvPv

N

T

Nonce-Respecting Adversary (⋆) =
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+
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• First term corresponds to random tag guessing:

• Any guess succeeds with probability 1/2t

• Second term corresponds to random key guessing:

• Any guess succeeds with probability µ/2k (as there are µ keys)
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Teaser: How to Forge (4/6)
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• Last two terms correspond to following attack:

• MakeM queries for plaintext 0rv−1, get ciphertexts Ci
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v

• Looking ahead, v is a logarithmic factor

• -
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• Last two terms correspond to following attack:

• Let B ∈ {0, 1}r be the most frequent ciphertext block Ci
1

• Query pf (B∥Xj), for f = 1, . . . , v − 1 and N random Xj ∈ {0, 1}c
• Total cost: N × (v − 1) permutation queries (can be simplified)
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• Last two terms correspond to following attack:

• With probability ≈ MN
2b

+ N
2c , adversary guesses internal state

• If v is large enough (e.g., ≈ ⌈b/r⌉), false positives can be discarded

with high probability
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• Last two terms correspond to following attack:

• Final step: connect initial and final states with a different plaintext

• Boils down to finding inner collisions, success probability ≈ N (N−1)
2c+1

• The input (N i, (C1∥C12∥C2), T
i) is a valid forgery

21 / 31



Teaser: How to Forge (4/6)

p p

· · ·

· · ·

p p

IV

K

\

b−k−n

\

k

\

n

(0∗∥K)⊕ (0∗∥1)

10∗

K∥0∗ 0∗∥K

⌊·⌋t

\

r

\

c

\

|Pv|

\

r−|Pv|

\

c

\

t

\

c
N i

T i

B0r Ci
20r Ci

v−10r Ci
v0r−1

Initial State Final State
∆P1 P2

coll

C1 C2C12

Nonce-Respecting Adversary (⋆) =
QD

2t
+

µN
2k

+
MN
2b

+
N
2c

• Last two terms correspond to following attack:

• Final step: connect initial and final states with a different plaintext

• Boils down to finding inner collisions, success probability ≈ N (N−1)
2c+1

• The input (N i, (C1∥C12∥C2), T
i) is a valid forgery

21 / 31



Teaser: How to Forge (4/6)

p p

· · ·

· · ·

p p

IV

K

\

b−k−n

\

k

\

n

(0∗∥K)⊕ (0∗∥1)

10∗

K∥0∗ 0∗∥K

⌊·⌋t

\

r

\

c

\

|Pv|

\

r−|Pv|

\

c

\

t

\

c
N i

T i

B0r Ci
20r Ci

v−10r Ci
v0r−1

Initial State Final State

∆P1 P2

coll

C1 C2C12

Nonce-Respecting Adversary (⋆) =
QD

2t
+

µN
2k

+
MN
2b

+
N
2c

• Last two terms correspond to following attack:

• Final step: connect initial and final states with a different plaintext

• Boils down to finding inner collisions, success probability ≈ N (N−1)
2c+1

• The input (N i, (C1∥C12∥C2), T
i) is a valid forgery

21 / 31



Teaser: How to Forge (5/6)
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• This time the adversary can re-use nonces

• Allows overwriting the outer parts to a value of its choice

• Same strategy as before can be applied, but state guessing step sped up

• Success probability of ≈ MN
2c
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• The internal states leak

• It just remains to apply the last step of previous attacks

• Success probability ≈ N (N−1)
2c+1
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Ascon-Hash/Ascon-(C)XOF



Modern Definition of Hashing

arbitrarily length message,

requested output size ν

}
XOF arbitrarily length digest\

∗

\

ν

• Function XOF from {0, 1}∗ to {0, 1}∞

• Variable-length input

• Variable-length output

• User specifies output length ν when calling the function
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Ascon-Hash/Ascon-(C)XOF

IV r

IV c
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absorb squeeze

Sponge [BDPV07]

• Permutation p on b bits

• r is the rate

• c is the capacity (security parameter)

• Output of ν bits (256 for Ascon-Hash, unlimited for the XOFs)
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Generic Security of the Sponge

• Sponge indifferentiable from random up to bound N 2/2c [BDPV08]

• Security of sponge truncated to ν bits against classical attacks [AMP10]:

Collision resistance: N 2/2c + N 2/2ν+1

← attack in min{2c/2, 2ν/2}

Second preimage resistance: N 2/2c + N/2ν

← attack in min{2c/2, 2ν}

Preimage resistance: N 2/2c + N/2ν

← attack in min{2ν−r + 2c/2, 2ν}

−−→ −−→

distance from sponge to RO classical attacks against RO

(N is # primitive evaluations) (N is # oracle evaluations)

• Attacks already described in [BDPV07]

• Tightened preimage resistance bound by Lefevre and Mennink [LM22]:

Preimage resistance: min
{
N/2ν−r,N/2c/2

}
+ N/2ν

← attack in min{2ν−r + 2c/2, 2ν}
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Simplified Numerical Interpretation

Application to Ascon-Hash and Ascon-(C)XOF Parameters

• (b, c, r, ν) =


(320, 256, 64, 256) for Ascon-Hash

(320, 256, 64,∞) for Ascon-XOF

(320, 256, 64,∞) for Ascon-CXOF

• Generic collision resistance as long as N ≪ min{2128, 2ν/2}
• Generic second preimage resistance as long as N ≪ min{2128, 2ν}
• Generic preimage resistance as long as N ≪ min{2192, 2ν}
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Bonus: Ascon-PRF



Bonus: Ascon-PRF [DEMS24]

p p p
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\

c′

initialization absorb finalization

Variant of Full-State Keyed Sponge [BDPV12, MRV15]

• Permutation p on b bits

• r is the rate, c is the capacity (security parameter)

• Domain separation to avoid squeezed tags being misused in absorption
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Generic Security of Ascon-PRF (1/2)

FSKS and Ascon-PRF

•2015 Mennink et al. [MRV15]

Security of FSKS but with proof-inherent “multiplicity term”

•2017 Daemen et al. [DMV17]

Generalized duplex

Applies to Ascon-PRF but with non-tight termMN/2c

•2019 Dobraunig and Mennink [DM19]

Leakage resilience of generalized duplex

Applies to Ascon-PRF

•2023 Mennink [Men23]

Duplex guide and improved analysis of Ascon-PRF

•2025 Lefevre and Mennink (this work)

Adapt bound of [Men23] with improved multicollision strategy
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Generic Security of Ascon-PRF (2/2)
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initialization absorb finalization

Generic Security Bound

• Ascon-PRF is multi-user secure up to bound µN
2k

+ N
2c′

+ MN
2b

Application to Ascon-PRF Parameters

• (k, b, c, r, c′, r′, t) = (128, 320, 64, 256, 192, 128,∞)

• Assume online complexity ofM≪ 264 · µ (could be taken higher)

• Generic security as long as N ≪ 2128/µ
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Conclusion

More in Paper: https://eprint.iacr.org/2024/1969

• Exact security models, settings, and discussions

• Discussion on multicollision bounding, assumption on p, q, . . .

• All proofs and generic attacks

What We Did Not Cover

• Related-key security and security for arbitrary key distributions

• Security under fault attacks

• Variant with nonce masking [DM24]

• Committing security

Thank you for your attention!
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Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

Sponge Functions.

Ecrypt Hash Workshop 2007, May 2007.

31 / 31



References iv

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
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