Description
Fully homomorphic encryption (FHE) is a form of encryption that allows arbitrary computations on data without requiring to decrypt the ciphertexts. Among the diverse FHE schemes, CKKS is designed to efficiently perform computations on real numbers in an encrypted state. Interestingly, Drucker et al [J. Cryptol.] recently proposed an efficient strategy to use CKKS in a black-box manner to perform computations on binary data. In this talk, after an introduction on fully homomorphic encryption, I will explain how to modify CKKS to gain efficiency when handling binary data. As we will see, the obtained performance compares very favourably with that of the other FHE schemes. Based on joint work with Youngjin Bae, Jung Hee Cheon and Jaehyung Kim.
Prochains exposés
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-