Description
Secure multi-party computing often enhances efficiency by leveraging correlated randomness. Recently, Boyle et al. showcased the effectiveness of pseudorandom correlation generators (PCGs) in producing substantial correlated (pseudo)randomness, specifically for two-party random oblivious linear evaluations (OLEs). This process involves minimal interactions and subsequent local computations, enabling secure two-party computation with silent pre-processing. The methodology is extendable to N-party through programmable PCGs. However, existing programmable PCGs for OLEs face limitations, as they generate OLEs exclusively over large fields and relying on a recent divisible ring-LPN assumption lacking a robust security foundation. In this talk, I'll introduce the Quasi-Abelian Syndrome Decoding Problem, a broader interpretation of the Quasi-Cyclic decoding problem. The hardness of this new problem enables constructing programmable PCGs for OLE correlation on any field Fq (with q>2). This instantiation is resilient to attacks on the linear test framework and allows a reduction in search to decision, addressing weaknesses in previous constructions. This work is based on a joint work with Maxime Bombar, Geoffroy Couteau and Alain Couvreur.
Prochains exposés
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-