Sommaire

  • Cet exposé a été présenté le 22 septembre 2023.

Description

  • Orateur

    Rachelle Heim Boissier - Inria

Duplex-based authenticated encryption modes with a sufficiently large key length are proven to be secure up to the birthday bound 2^(c/2), where c is the capacity. However this bound is not known to be tight and the complexity of the best known generic attack, which is based on multicollisions, is much larger: it reaches 2^c/α where α represents a small security loss factor. There is thus an uncertainty on the true extent of security beyond the bound 2^(c/2) provided by such constructions. In this paper, we describe a new generic attack against several duplex-based AEAD modes. Our attack leverages random functions statistics and produces a forgery in time complexity O(2^(3c/4)) using negligible memory and no encryption queries. Furthermore, for some duplex-based modes, our attack recovers the secret key with a negligible amount of additional computations. Most notably, our attack breaks a security claim made by the designers of the NIST lightweight competition candidate Xoodyak. This attack is a step further towards determining the exact security provided by duplex-based constructions.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés