Description
Lyubashevsky’s signatures are based on the Fiat-Shamir with aborts paradigm, whose central ingredient is the use of rejection sampling to transform (secret-key-dependent) signature samples into samples from a secret-key-independent distribution. The choice of these two underly- ing distributions is part of the rejection sampling strategy, and various instantiations have been considered up to this day. In this work, we inves- tigate which strategy leads to the most compact signatures, given signing runtime requirements. Our main contributions are as follows:<br/> (i) We prove lower bounds for compactness of signatures given signing runtime requirements, and (ii) show that these lower bounds are reached considering a new and elementary choice of distributions, namely con- tinuous uniform distributions over hyperballs. (iii) We also prove that, for any fixed pair of distributions, classic rejection sampling is the best strategy for minimizing the number of aborts, as well as (iv) propose a novel strategy that allows to fix (any) bound on the number of aborts while still guaranteeing correctness and security.<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09
Prochains exposés
-
SoK: Security of the Ascon Modes
Orateur : Charlotte Lefevre - Radboud University
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…] -
Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators
Orateur : Maciej Skorski - Laboratoire Hubert Curien
The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators. While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]-
Cryptography
-
TRNG
-
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-