Description
Error correcting codes are well known to provide possible candidates for building quantum safe cryptographic primitives. Besides the Hamming metric which has a long-standing history, one may consider other metrics such as the rank metric. Gabidulin codes are the rank metric analogue of Reed-Solomon codes and can be efficiently decoded up to half the minimum distance. However, beyond this radius, they are believed to be difficult to decode. Based on this hard problem, in 2005 Faure and Loidreau designed an encryption scheme with small public keys. In 2016 though, this scheme was subject to a very efficient key recovery attack by Gaborit, Otmani and Talé-Kalachi. More recently, two independent repairs of Faure-Loidreau scheme resisting the previous attack appeared. The first one, due to Renner, Puchinger and Wachter-Zeh is called LIGA, and the second one due to Lavauzelle, Loidreau and Pham is called RAMESSES. In this talk, I will present how to decode any code extending the Gabidulin codes, at the cost of a significant decrease of the decoding radius, and show how this decoder can be used to provide an efficient message recovery attack on LIGA and RAMESSES.<br/> This is joint work with Alain Couvreur.<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09
Prochains exposés
-
Présentations des nouveaux doctorants Capsule
Orateur : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Orateur : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-