Sommaire

  • Cet exposé a été présenté le 24 mai 2019.

Description

  • Orateur

    Alice Pellet-Mary - ENS de Lyon

Finding a short non zero vector in an Euclidean lattice is a well-studied problem which has proven useful to construct many cryptographic primitives. The current best asymptotic algorithm to find a relatively short vector in an arbitrary lattice is the BKZ algorithm. This algorithm recovers a vector which is at most $2^{n^{\alpha}}$ times larger than the shortest non zero vector in time $2^{n^{1-\alpha}}$ for any $\alpha$ between 0 and 1.<br/> In order to gain in efficiency, it is sometimes interesting to use structured lattices instead of general lattices. An example of such structured lattices are ideal lattices. One may then wonder whether, on the security front, it is easier to find short vectors in a structured lattice or not. Until 2016, there was no known algorithm which would perform better on ideal lattices than the BKZ algorithm (either classically or quantumly). In 2016 and 2017, Cramer-Ducas-Peikert-Regev and Cramer-Ducas-Wesolowski proposed a quantum algorithm that finds a $2^{\sqrt n}$ approximation of the shortest non zero vector in polynomial time. However, the BKZ algorithm remained the best algorithm in the classical setting or for approximation factor smaller than $2^{\sqrt n}$ in the quantum setting.<br/> In this talk, I will present an algorithm that extends the one of Cramer et al. and improves upon the BKZ algorithm for ideal lattices, both quantumly and classically. This algorithm is heuristic and non uniform (i.e., it requires an exponential time pre-processing).<br/> lien: http://desktop.visio.renater.fr/scopia?ID=723420***3028&autojoin

Prochains exposés

  • Predicting Module-Lattice Reduction

    • 19 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paola de Perthuis - CWI

    Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]
    • Cryptography

  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • 23 janvier 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Voir les exposés passés