Description
Anonymity is a primary ingredient for our digital life. Several tools have been designed to address it such as, for authentication, blind signatures, group signatures or anonymous credentials and, for confidentiality, randomizable encryption or mix-nets.<br/> When it comes to complex electronic voting schemes, random shuffling of ciphertexts with mix-nets is the only known tool. Such mix-nets are also an essential tool for anonymous routing. However, it requires huge and complex zero-knowledge proofs to guarantee the actual permutation of the initial ciphertexts. In this talk, we propose a new approach for proving correct shuffling: the mix-servers can simply randomize individual ballots, which means the ciphertexts, the signatures, and the verification keys, with an additional global proof of constant size, and the output will be publicly verifiable. The computational complexity for the mix-servers is linear in the number of ciphertexts. Verification is also linear in the number of ciphertexts, independently of the number of rounds of mixing. This leads to the most efficient technique, that is highly scalable. This is joint work with Chloé Hébant and Duong Hieu Phan.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=726372***9089&autojoin
Prochains exposés
-
SoK: Security of the Ascon Modes
Orateur : Charlotte Lefevre - Radboud University
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack[…] -
Comprehensive Modelling of Power Noise via Gaussian Processes with Applications to True Random Number Generators
Orateur : Maciej Skorski - Laboratoire Hubert Curien
The talk examines power noise modelling through Gaussian Processes for secure True Random Number Generators. While revisiting one-sided fractional Brownian motion, we obtain novel contributions by quantifying posterior uncertainty in exact analytical form, establishing quasi-stationary properties, and developing rigorous time-frequency analysis. These results are applied to model oscillator[…]-
Cryptography
-
TRNG
-
-
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-