Description
Reed-Solomon codes have optimal minimum distance and we know efficient encoding and decoding algorithms of quasi-linear complexity in the length. Their main drawback is that their lengths are bounded by the size of the alphabet, i.e. the field over which they are defined. Algebraic geometry codes are a generalisation allowing longer codes on the same alphabet, and one of the most interesting sub-families of these are the Hermitian codes. The price for the greater length is more complicated computations: so far, no decoding algorithm with sub-quadratic complexity in the length of the code was known. We show how to achieve this by building the decoder around the problem of finding a short vector in an F[x]-module, and performing this step using state-of-the-art algorithms from computer algebra. This approach follows recent trends in decoding of Reed-Solomon codes. Furthermore, our decoder is a "Power decoder", probabilistically capable of decoding errors beyond half-the-minimum distance for low-rate codes.
Prochains exposés
-
Présentations des nouveaux doctorants Capsule
Orateur : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Orateur : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Orateur : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
CryptoVerif: a computationally-sound security protocol verifier
Orateur : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-