Description
Reed-Solomon codes have optimal minimum distance and we know efficient encoding and decoding algorithms of quasi-linear complexity in the length. Their main drawback is that their lengths are bounded by the size of the alphabet, i.e. the field over which they are defined. Algebraic geometry codes are a generalisation allowing longer codes on the same alphabet, and one of the most interesting sub-families of these are the Hermitian codes. The price for the greater length is more complicated computations: so far, no decoding algorithm with sub-quadratic complexity in the length of the code was known. We show how to achieve this by building the decoder around the problem of finding a short vector in an F[x]-module, and performing this step using state-of-the-art algorithms from computer algebra. This approach follows recent trends in decoding of Reed-Solomon codes. Furthermore, our decoder is a "Power decoder", probabilistically capable of decoding errors beyond half-the-minimum distance for low-rate codes.
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-