Sommaire

  • Cet exposé a été présenté le 12 décembre 2014.

Description

  • Orateur

    Sven Muelich - Institute of Communications Engineering, Ulm University

Cryptographic applications require random, unique and unpredictable keys. Since most cryptosystems need to access the key several times, it usually has to be stored permanently. This is a potential vulnerability regarding security, even if a protected memory is used as key storage. Implementing secure key generation and storage is therefore an important and challenging task which can be accomplished by Physical Unclonable Funtions (PUFs). PUFs are, typically digital, circuits that possess an intrinsic random- ness due to process variations which occur during manufacturing. They evaluate these variations and can therefore be used to generate secure cryptographic keys. It is not necessary to store these keys in a protected memory since they are implicitly stored in the PUF and can be repro- duced on demand. However, the results when reproducing a key vary, which can be interpreted as errors. Thus, error correction must be used in order to compensate this effect. We explain how methods from coding theory are applied in order to ensure reliable key reproduction. Previous work on this topic used stan- dard constructions, e.g. an ordinary concatenated scheme of a BCH and Repetition code. Based on this work we show how better results can be obtained using code classes and decoding principles not used for this sce- nario before. We exemplify these methods by specific code constructions which improve existing codes with respect to error probability, decoding complexity and codeword length. Examples based on Generalized Con- catenated, Reed-Muller and Reed-Solomon codes are given.

Prochains exposés

  • Présentations des nouveaux doctorants Capsule

    • 03 octobre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Alisée Lafontaine et Mathias Boucher - INRIA Rennes

    2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions"  Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens.  
  • Design of fast AES-based Universal Hash Functions and MACs

    • 10 octobre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Augustin Bariant - ANSSI

    Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • 07 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

  • Some applications of linear programming to Dilithium

    • 14 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
Voir les exposés passés