Sommaire

  • Cet exposé a été présenté le 15 avril 2011.

Description

  • Orateur

    Laila El Aimani - Technicolor

Digital signatures were introduced to guarantee the authenticity and integrity of the underlying messages. However, and in situations where the signed data is commercially or personally sensitive, the universal verification of digital signatures is undesirable, and needs to be limited or controlled. Therefore, mechanisms which share most properties with digital signatures except the universal verification were invented to respond to the aforementioned need; we call such mechanisms ``opaque signatures''. In this talk, we study confirmer signatures where the verification cannot be achieved without the cooperation of a specific entity, i.e. the confirmer, via the so-called confirmation/denial protocols. Generic constructions of designated confirmer signatures follow one of the following two strategies; either produce a digital signature on the message to be signed, then encrypt the resulting signature, or produce a commitment on the message, encrypt the string used to generate the commitment, and finally sign the latter. In this talk, we revisit both methods and establish the minimal and sufficient assumptions on the building blocks in order to attain secure confirmer signatures. Our study concludes that both paradigms, when used in their basic form, cannot allow a class of encryption schemes which is vital for the efficiency of the confirmation/denial protocols. Next, we propose a variation of both paradigms which thrives on very cheap encryption and consequently leads to efficient confirmer signatures. Indeed, the resulting constructions do not only compete with the dedicated realizations of confirmer/undeniable signatures proposed recently, e.g. \citep{LeTrieuKurosawaOgata2009b,SchuldtMatsuura2010}, but also serve for analyzing the early schemes that have a speculative security.<br/> The contents of this talk are parts of the speaker's PhD thesis.

Prochains exposés

  • Some applications of linear programming to Dilithium

    • 14 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • 21 novembre 2025 (13:45 - 14:45)

    • Salle Guernesey à l'ISTIC

    Orateur : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • 05 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

Voir les exposés passés