Sommaire

  • Cet exposé a été présenté le 01 avril 2011.

Description

  • Orateur

    Christiane Peters - Technische Universiteit Eindhoven

The McEliece cryptosystem is based on classical Goppa codes over F_2. Generalizations of the McEliece cryptosystem using Goppa codes over larger fields F_q were investigated but not found to offer advantages for small q. We showed that codes over F_31 offer advantages in key size compared to codes over F_2 while maintaining the same security level against all attacks known. However, codes over smaller fields such as F_3 were still not competitive in key size with binary codes.<br/> The "wild McEliece cryptosystem" uses wild Goppa codes over finite fields to achieve smaller public key sizes compared to the original McEliece cryptosystem. This proposal makes "larger tiny fields" attractive and bridges the gap between F_2 and F_31. We added an extra shield to the wild McEliece cryptosystem, slightly increasing key sizes but drastically increasing the pool of Goppa polynomials to choose from.

Prochains exposés

  • Présentations des nouveaux doctorants Capsule

    • 03 octobre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Alisée Lafontaine et Mathias Boucher - INRIA Rennes

    2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions"  Mathias Boucher, encadré par Yixin Shen, parlera de "quantum lattice sieving" 
  • Design of fast AES-based Universal Hash Functions and MACs

    • 10 octobre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Augustin Bariant - ANSSI

    Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • 07 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

  • Some applications of linear programming to Dilithium

    • 14 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

Voir les exposés passés