Sommaire

  • Cet exposé a été présenté le 10 décembre 2010.

Description

  • Orateur

    Dominique Schroeder - TU Darmstadt

Aggregate message authentication codes, as introduced by Katz and Lindell (CT-RSA 2008), combine several MACs into a single value, which has roughly the same size as an ordinary MAC. These schemes reduce the communication overhead significantly and are therefore a promising approach to achieve authenticated communication in mobile ad-hoc networks, where communication is prohibitively expensive. Here we revisit the unforgeability notion for aggregate MACs and discuss that the definition does not prevent "mix-and-match" attacks in which the adversary turns several aggregates into a "fresh" combination, i.e., into a valid aggregate on a sequence of messages which the attacker has not requested before. In particular, we show concrete attacks on the previous scheme.<br/> To capture the broader class of combination attacks, we provide a stronger security notion of aggregation unforgeability. While we can provide stateful transformations lifting (non-ordered) schemes to meet our stronger security notion, for the statefree case we switch to the new notion of history-free se- quential aggregation. This notion is somewhat between non-ordered and se- quential schemes and basically says that the aggregation algorithm is carried out in a sequential order but must not depend on the preceding messages in the sequence, but only on the shorter input aggregate and the local message. We finally show that we can build an aggregation-unforgeable, history-free sequential MAC scheme based on general assumptions.

Prochains exposés

  • Predicting Module-Lattice Reduction

    • 19 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paola de Perthuis - CWI

    Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]
    • Cryptography

  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • 23 janvier 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Voir les exposés passés