Description
In this talk I will introduce a new kind of attack on cryptosystems which can be represented by an (unknown) low degree polynomial with tweakable public variables such as a plaintext or IV and fixed secret variables such as a key. Its complexity is exponential in the degree but only polynomial in the key size, and it was successfully applied to several concrete schemes. In particular, for Trivium with 672 initialization rounds, it reduces the complexity of the best known attack from a barely practical 2^{55} to a trivial 2^{19}, which can recover the full key in less than a second on a single PC.
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Lightweight (AND, XOR) Implementations of Large-Degree S-boxes
Orateur : Marie Bolzer - LORIA
The problem of finding a minimal circuit to implement a given function is one of the oldest in electronics. In cryptography, the focus is on small functions, especially on S-boxes which are classically the only non-linear functions in iterated block ciphers. In this work, we propose new ad-hoc automatic tools to look for lightweight implementations of non-linear functions on up to 5 variables for[…]-
Cryptography
-
Symmetrical primitive
-
Implementation of cryptographic algorithm
-
-
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-