Description
Forward-secure signatures (FSS) prevent forgeries for past time periods when an attacker obtains full access to the signer's storage. To simplify the integration of these primitives into standard security architectures, Boyen, Shacham, Shen and Waters recently introduced the concept of forward-secure signatures with untrusted updates where private keys are additionally protected by a second factor (derived from a password). Key updates can be made on encrypted version of signing keys so that passwords only come into play for signing messages.<br/> The scheme put forth by Boyen et al. relies on bilinear maps and does not require the random oracle. The latter work also suggested the integration of untrusted updates in the Bellare-Miner forward-secure signature and left open the problem of endowing other existing FSS systems with the same second factor protection. We solve this problem by showing how to adapt the very efficient generic construction of Malkin, Micciancio and Miner (MMM) to untrusted update environments. More precisely, our modified construction - which does not use random oracles either - obtains a forward-secure signature with untrusted updates from any 2-party multi-signature in the plain public key model. In combination with Bellare and Neven's multi-signatures, our generic method yields implementations based on standard assumptions such as RSA, factoring or the hardness of computing discrete logarithms. Like the original MMM scheme, it does not require to set a bound on the number of time periods at key generation.
Prochains exposés
-
Verification of Rust Cryptographic Implementations with Aeneas
Orateur : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Orateur : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Orateur : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-