Sommaire

  • Cet exposé a été présenté le 28 septembre 2007.

Description

  • Orateur

    Aurélie Bauer - Université de Versailles

En 1996, Coppersmith introduit deux techniques basées sur la réduction de réseaux permettant de retrouver de petites racines d'équations polynomiales. Une de ces techiques s'applique au cas d'équations modulaires en une variable, l'autre concerne les équations entières à deux variables. Depuis, ces méthodes ont été utilisées dans de nombreuses applications cryptographiques. Pour certaines de ces applications, qui font intervenir plus de deux variables, des extensions des méthodes de Coppersmith ont été proposées. Malheureusement, ces méthodes sont heuristiques et ne permettent pas toujours de retrouver les racines recherchées quand le nombre de variables est supérieur à deux. Dans cette présentation, nous proposons une nouvelle variante de l'algorithme de Coppersmith dans le cas d'équations entières faisant intervenir trois variables et nous étudions son applicabilité. Nous nous intéressons notamment à des attaques sur RSA dans le cas d'exposants petits. Cette méthode utilise non seulement la réduction de réseaux mais également le calcul de bases de Gröbner. En principe, elle peut être généralisée dans le cas de quatre variables ou plus.

Prochains exposés

  • Verification of Rust Cryptographic Implementations with Aeneas

    • 13 février 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • 06 mars 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • 03 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • 10 avril 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Voir les exposés passés