Description
Soit P(x,y) un polynôme en deux variables à coefficients réels. On suppose que P(x,y) est à valeurs positives sur R^2. Hilbert a montré que le polynôme P(x,y) s'écrit comme somme de quatres carrés dans R(x,y). Une question naturelle est de savoir si P(x,y) est une somme de trois carrés dans R(x,y). Cette question n'a pas de réponse connue en général, mais elle peut être reformulée en termes de jacobiennes. Nous expliquons d'abord comment l'étude des points de torsion R(x)-rationnels de certaines jacobiennes permet d'énoncer des formules pour écrire certains produits de la forme (y^2+a(x)^2)(y^2+b(x))(y^2+c(x))(y^2+d(x)) comme somme de trois carrés dans R(x,y) (une telle écriture n'existe pas toujours). Dans un second temps, nous donnons une famille de polynômes en deux variables P_{i}(x,y) positifs ou nuls sur R^2 de degré 8 qui ne sont pas somme de trois carrés dans R(x,y). Pour cela, nous montrons que le R(x)-rang de Mordell-Weil de la jacobienne de la courbe hyperelliptique d'équation affine z^2+P_{i}(x,y)=0 est nul.
Prochains exposés
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-