Description
Soit L/K une extension de corps locaux de degré [L:K]=car K=p>0. Soit O_L l'anneau des entiers de L. Lorsque L/K est totalement ramifiée, on étudie la structure de O_L comme module sur l'ordre A associé à l'extension L/K. A l'aide d'arguments essentiellement combinatoires nous donnerons un critère purement algébrique pour que O_L soit libre sur A : ce résultat renforce des travaux récents de Aiba et Lettl et s'obtient à partir d'une preuve indépendante. Nous présenterons également un résultat plus général qui permet de calculer directement le nombre minimal de générateurs de O_L comme A-module.
Prochains exposés
-
Predicting Module-Lattice Reduction
Orateur : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Orateur : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-