Sommaire

  • Cet exposé a été présenté le 01 juillet 2005.

Description

  • Orateur

    Zuzana Beerliova - ETH Zurich

Secure multi-party computation (MPC) allows a set of $n$ players to securely compute an agreed function of their inputs, even when up to $t$ of the players are under complete adversarial control. We consider secure MPC in the information-theoretic model with broadcast channels (PKI setup) and present an efficient protocol with optimal resilience ($t< n/2$), using a new technique technique called dispute control: During the course of the protocol, the players keep track of disputes that arise among them, and the ongoing computation is adjusted such that known disputes cannot arise again. This prevents the faulty players from intervening too often, which again allows the honest players to reduce the frequency of expensive verifications. This way, we can securely (for some security parameter $\kappa$) compute a circuit with $m$ gates with communication complexity $O(m n^2 \kappa)$ bits (plus some overhead independent of $m$). This is to be compared with $\Omega(m n^{22} \kappa)$ -- the communication complexity of the best known protocol in the same model.

Prochains exposés

  • Some applications of linear programming to Dilithium

    • 14 novembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • 21 novembre 2025 (13:45 - 14:45)

    • Salle Guernesey à l'ISTIC

    Orateur : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • 28 novembre 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Orateur : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • 05 décembre 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

Voir les exposés passés