Filtrer par type de contenu

Sélectionnez un ou plusieurs filtres. Ce choix permettra de recharger la page pour afficher les résultats filtrés.

Supprimer tous les filtres

674 résultats

    • Séminaire

    • Cryptographie

    Packings on the Grassmann manifold: an interesting approach for non coherent space-time coding

    • 21 novembre 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Jean-Claude Belfiore - ENST

    The need of high data rates on the radio channel (WiFi and its future for example) explains the increasing number of researchers working on space-time codes. Preparing Wireless IP systems, some companies and some researchers are promoting the use of non coherent space-time codes.<br/> We show that designing a non coherent space-time code is equivalent to finding some good packings on the Grassmann[…]
    • Séminaire

    • Cryptographie

    Efficient arithmetic on (hyper-)elliptic curves over finite fields

    • 04 avril 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Tanja Lange - Ruhr-Universität Bochum

    The talk will be concerned with arithmetic on elliptic and hyperelliptic curves. We show how fast the arithmetic can get by clever choices of the coordinates and present special kinds of curves which allow even faster arithmetic using the Frobenius endomorphism. For elliptic curves this has been used to achieve fast arithmetic for the past years. However, so far arithmetic in the ideal class group[…]
    • Séminaire

    • Cryptographie

    Sur le calcul du corps de définition d'un point de torsion d'une jacobienne d'une courbe de genre quelconque

    • 23 janvier 2004

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Bas Edixhoven - Leiden University

    En commençant par un calcul explicite sur une courbe elliptique, j'expliquerai ma stratégie pour calculer le corps de définition d'un point de torsion d'une jacobienne d'une courbe de genre quelconque. En gros, cette stratégie consiste à calculer le polynôme minimal d'une coordonnée d'un tel point par une approximation (complexe ou p-adique) avec une précision suffisante. J'expliquerai comment la[…]
    • Séminaire

    • Cryptographie

    Constructive Galois Theory

    • 12 septembre 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Juergen Klueners - Universität Kassel

    In constructive Galois theory, there are two main questions: the direct problem and the inverse problem. For the inverse problem the question is whether it is possible to find a polynomial such that the Galois group of that polynomial is a given finite group. In this talk, we will focus on the direct problem. Given a polynomial f we explain how to compute the Galois group of this polynomial. The[…]
    • Séminaire

    • Cryptographie

    Arithmétique des courbes elliptiques et hyperelliptiques en cryptographie

    • 07 mars 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Sylvain Duquesne - Université de Bordeaux, projet AREHCC

    Nous nous interessons dans cet exposé à l'aspect arithmétique de la cryptographie elliptique et hyperelliptique. Nous verrons comment obtenir une arithmétique la plus rapide possible, en particulier au niveau de la multiplication scalaire, qui est l'opération de base dans les protocoles cryptographiques fondés sur les courbes. Nous nous interesserons aux cas où le corps de base est $F_p$ ou $F_{2[…]
    • Séminaire

    • Cryptographie

    On homomorpic public-key cryptosystems over groups and rings

    • 14 novembre 2003

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Orateur : Ilia Ponomarenko - St. Petersburg

    We describe new public-key cryptosystems based on secret group and ring homomorphisms. For the group case, we use a secret embedding of a free group of rank 2 to the 2-dimensional modular group. For the ring case, we use a secret homomorphism induced by a secret group homomorphism of the corresponding multiplicative groups.