Description
In this paper, a new approach for the detection of ransomware based on the runtime analysis of their behaviour is presented. The main idea is to get samples by using a mini-filter to intercept write requests, then decide if a sample corresponds to a benign or a malicious write request. To do so, in a learning phase, statistical models of structured file headers are built using Markov chains. Then in a detection phase, a maximum likelihood test is used to decide if a sample provided by a write request is normal or malicious. We introduce new statistical distances between two Markov chains, which are variants of the Kullback-Leibler divergence, which measure the efficiency of a maximum likelihood test to distinguish between two distributions given by Markov chains. This distance and extensive experiments are used to demonstrate the relevance of our method.
Practical infos
Next sessions
-
[CANCELLED] Black-Box Collision Attacks on Widely Deployed Perceptual Hash Functions and Their Consequences
Speaker : Diane Leblanc-Albarel - KU Leuven
[CANCELLED] Perceptual hash functions identify multimedia content by mapping similar inputs to similar outputs. They are widely used for detecting copyright violations and illegal content but lack transparency, as their design details are typically kept secret. Governments are considering extending the application of these functions to Client-Side Scanning (CSS) for end-to-end encrypted services:[…]-
Cryptography
-
SoSysec
-
Protocols
-
-
A non-comparison oblivious sort and its application to private k-NN
Speaker : Sofiane Azogagh - UQÀM
Sorting is a fundamental subroutine of many algorithms and as such has been studied for decades. A well-known result is the Lower Bound Theorem, which states that no comparison-based sorting algorithm can do better than O(nlog(n)) in the worst case. However, in the fifties, new sorting algorithms that do not rely on comparisons were introduced such as counting sort, which can run in linear time[…]-
Cryptography
-
SoSysec
-
Privacy
-
Databases
-
Secure storage
-