Description
Group encryption (GE) is the natural encryption analogue of group signatures in that it allows verifiably encrypting messages for some anonymous member of a group while providing evidence that the receiver is a properly certified group member. Should the need arise, an opening authority is capable of identifying the receiver of any ciphertext. As intro- duced by Kiayias, Tsiounis and Yung (Asiacrypt’07), GE is motivated by applications in the context of oblivious retriever storage systems, anony- mous third parties and hierarchical group signatures. This paper provides the first realization of group encryption under lattice assumptions. Our construction is proved secure in the standard model (assuming interac- tion in the proving phase) under the Learning-With-Errors (LWE) and Short-Integer-Solution (SIS) assumptions. As a crucial component of our system, we describe a new zero-knowledge argument system allowing to demonstrate that a given ciphertext is a valid encryption under some hid- den but certified public key, which incurs to prove quadratic statements about LWE relations. Specifically, our protocol allows arguing knowledge of witnesses consisting of X ∈ ℤ_q^{m×n}, s ∈ ℤ_q^n and a small-norm e ∈ ℤ^m which underlie a public vector b = X · s + e ∈ ℤ_q^m while simultaneously proving that the matrix X ∈ ℤ_q^{m×n} has been correctly certified. We believe our proof system to be useful in other applications involving zero-knowledge proofs in the lattice setting. lien: rien
Next sessions
-
Présentations des nouveaux doctorants Capsule
Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Speaker : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]