Description
Suite aux travaux de Bhargava sur la généralisation de la loi de Gauss sur le groupes de classes des formes quadratiques binaires, on présentera les quatre formalismes des formes quadratiques binaires utilisés et connus jusqu'à présent:<br/> - le formalisme algébrique de Gauss<br/> - le formalisme projectif de Dirichlet<br/> - le formalisme basé sur les idéaux de Schoof<br/> - le formalisme géométrique de Bhargava<br/> On montrera que ces quatre formalismes sont tous équivalents. On présentera quelques conséquences des travaux de Bhargava du point de vue cryptologique. En particulier, on présente de nouvelles formules de la loi de Gauss grâce à la représentation de Bhargava.<br/> On conclura en présentant une "nouvelle" loi de groupe sur les classes de formes cubiques binaires qui découle directement du formalisme de Bhargava.
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-