Description
Nous présentons un nouvel algorithme itératif pour le PGCD de deux entiers ou deux polynômes. Il est base sur une procédure itérative de type half-GCD qui évite la répétition d'appels récursifs. On procède progressivement a partir des bits de poids les plus forts. Quoique la complexité reste en $O(n \log2 n \log \log n$ pour deux entiers de $n$ bits, comme l'algorithme fameux de Schonhage, notre algorithme réduit la taille des entiers d'au moins un demi mot mémoire a chaque itération. La simplicité de son schéma algorithmique pourrait en faire une alternative utile aux algorithmes récursifs du PGCD.
Next sessions
-
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-