Description
Soit S une suite d'éléments d'un groupe fini G noté multiplicativement ; le problème du sac à dos consiste à trouver une sous-suite de S dont le produit vaut un élément donné z de G. Des méthodes très efficaces pour le résoudre existent quand G=Z/nZ mais elles nous abandonnent lorsque l'on change de groupe : on peut en effet prouver qu'aucun algorithme générique (c'est-à-dire, en un sens, qui s'applique à tout groupe G) ne peut résoudre ce problème en moins de O(sqrt(#G)) opérations. Si une approche de type « pas de bébé, pas de géant » réussit avec pour complexité O(sqrt(#G)) en temps et en mémoire, il n'est pas évident de faire mieux. Dans un premier temps, cet exposé aura pour but d'expliquer comment adapter certaines idées de Pollard à ce contexte afin d'obtenir un algorithme en temps O(sqrt(#G)) et coût mémoire négligeable. Ensuite, nous présenterons certaines applications, notamment à la recherche d'isogénie entre deux courbes elliptiques.<br/> Ces travaux sont conjoints avec Andrew V. Sutherland.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Lightweight (AND, XOR) Implementations of Large-Degree S-boxes
Speaker : Marie Bolzer - LORIA
The problem of finding a minimal circuit to implement a given function is one of the oldest in electronics. In cryptography, the focus is on small functions, especially on S-boxes which are classically the only non-linear functions in iterated block ciphers. In this work, we propose new ad-hoc automatic tools to look for lightweight implementations of non-linear functions on up to 5 variables for[…]-
Cryptography
-
Symmetrical primitive
-
Implementation of cryptographic algorithm
-
-
Algorithms for post-quantum commutative group actions
Speaker : Marc Houben - Inria Bordeaux
At the historical foundation of isogeny-based cryptography lies a scheme known as CRS; a key exchange protocol based on class group actions on elliptic curves. Along with more efficient variants, such as CSIDH, this framework has emerged as a powerful building block for the construction of advanced post-quantum cryptographic primitives. Unfortunately, all protocols in this line of work are[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-