Table of contents

  • This session has been presented July 01, 2011.

Description

  • Speaker

    Marion Daubrignard - Verimag

Providing security proofs instead of arguing lack of existing relevant attacks is a quite new approach when it comes to cryptography. In the last thirty years, a lot of work has been done to formalize security of systems and prove of the achievement of security criteria. It has resulted in the design of a great number of proofs under various hypotheses. Though a step in the right direction, these pencil-and-paper proofs are so numerous, involved and technical that the community has difficulty to carefully check them. The well-known example of the encryption scheme OAEP whose security proof, apparently correct, was corrected seven years after its publication illustrates that security-dedicated verification tools need to be designed. Our work takes place in the so-called computational model, where messages are considered to be bitstrings, and system adversaries are probabilistic Turing machines. A proof of security is then a complexity-theoretic reduction argument: the probability of success of an adversary in solving a security challenge is reduced to its ability to solve a known difficult problem (given a fixed amount of resources).  Firstly, we provide some intuition on usual security requirements, and common sketches of security proofs. Then, we present a semantics and a logic to formalize security proofs. One could say there are several levels in automatic proving: computer-aided verification of proofs, computer-aided design of proofs, and automatic generation of proofs. We show how our inference rules can be used to derive proofs and verify them automatically, or sometimes perform a proof search using some additional inputs.

Next sessions

  • Séminaire C2 à INRIA Paris

    • January 16, 2026 (10:00 - 17:00)

    • INRIA Paris

    Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ 
  • Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs

    • January 23, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven

    The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]
    • Cryptography

Show previous sessions