Description
Providing security proofs instead of arguing lack of existing relevant attacks is a quite new approach when it comes to cryptography. In the last thirty years, a lot of work has been done to formalize security of systems and prove of the achievement of security criteria. It has resulted in the design of a great number of proofs under various hypotheses. Though a step in the right direction, these pencil-and-paper proofs are so numerous, involved and technical that the community has difficulty to carefully check them. The well-known example of the encryption scheme OAEP whose security proof, apparently correct, was corrected seven years after its publication illustrates that security-dedicated verification tools need to be designed. Our work takes place in the so-called computational model, where messages are considered to be bitstrings, and system adversaries are probabilistic Turing machines. A proof of security is then a complexity-theoretic reduction argument: the probability of success of an adversary in solving a security challenge is reduced to its ability to solve a known difficult problem (given a fixed amount of resources). Firstly, we provide some intuition on usual security requirements, and common sketches of security proofs. Then, we present a semantics and a logic to formalize security proofs. One could say there are several levels in automatic proving: computer-aided verification of proofs, computer-aided design of proofs, and automatic generation of proofs. We show how our inference rules can be used to derive proofs and verify them automatically, or sometimes perform a proof search using some additional inputs.
Next sessions
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-