Table of contents

  • This session has been presented July 01, 2011.

Description

  • Speaker

    Marion Daubrignard - Verimag

Providing security proofs instead of arguing lack of existing relevant attacks is a quite new approach when it comes to cryptography. In the last thirty years, a lot of work has been done to formalize security of systems and prove of the achievement of security criteria. It has resulted in the design of a great number of proofs under various hypotheses. Though a step in the right direction, these pencil-and-paper proofs are so numerous, involved and technical that the community has difficulty to carefully check them. The well-known example of the encryption scheme OAEP whose security proof, apparently correct, was corrected seven years after its publication illustrates that security-dedicated verification tools need to be designed. Our work takes place in the so-called computational model, where messages are considered to be bitstrings, and system adversaries are probabilistic Turing machines. A proof of security is then a complexity-theoretic reduction argument: the probability of success of an adversary in solving a security challenge is reduced to its ability to solve a known difficult problem (given a fixed amount of resources).  Firstly, we provide some intuition on usual security requirements, and common sketches of security proofs. Then, we present a semantics and a logic to formalize security proofs. One could say there are several levels in automatic proving: computer-aided verification of proofs, computer-aided design of proofs, and automatic generation of proofs. We show how our inference rules can be used to derive proofs and verify them automatically, or sometimes perform a proof search using some additional inputs.

Next sessions

  • Présentations des nouveaux doctorants Capsule

    • October 03, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes

    2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions"  Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens.  
  • Design of fast AES-based Universal Hash Functions and MACs

    • October 10, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Augustin Bariant - ANSSI

    Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • November 07, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

  • Some applications of linear programming to Dilithium

    • November 14, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
Show previous sessions