Description
Let A be an abelian variety over a finite field. Liftable endomorphisms of A act on the deformation space. In the ordinary case there's a canonical way of lifting Frobenius. We will show, that the action of Frobenius has a unique fixpoint, the canonical lift. A proof will be given in terms of Barsotti-Tate groups using the Serre-Tate theorem. Drinfeld's proof of this theorem will be sketched (see [1]). It will be explained how to make the above action explicit for elliptic curves. In characterictic 2 one can describe the action by the AGM (arithmetic geometric mean) sequence. References :<br/> [1] N.Katz: Serre-Tate local moduli, in 'surfaces algebriques', Springer lecture notes 868, 1981<br/> [2] R.Carls: in prep., http://www.math.leidenuniv.nl/~carls/extract.ps
Next sessions
-
Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)
Speaker : Léo Colisson - Université Grenoble Alpes
We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]-
Cryptography
-