Table of contents

  • This session has been presented January 17, 2020.

Description

  • Speaker

    Guilhem Castagnos - Université Bordeaux 1

More than 30 years ago, Buchmann and Williams proposed using ideal class groups of imaginary quadratic fields in cryptography with a Diffie-Hellman style key exchange protocol. After several twists, there has been in recent years a new interest in this area. This rebirth is mainly due to two features. First, class groups of imaginary quadratic fields allow the design of cryptographic protocols that do not require a trusted setup. This particularity has been used for example to build cryptographic accumulators and verifiable delay functions. Secondly, using these groups, we proposed in 2015 a versatile encryption scheme, linearly homomorphic modulo a prime that has found many applications, for instance in secure two-party computation.<br/> In this talk, I will give an overview of cryptography based on class groups of imaginary quadratic fields and discuss recent developments.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=727785***7248&autojoin

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions